41 research outputs found

    ModĂ©lisation dynamique tridimensionnelle avec tache solaire pour la simulation du comportement thermique d’un bĂątiment basse consommation

    Get PDF
    Low energy building constructions become sensitive to internal gains : any internal heating source has an impact on the envelope. Therefore, it is important to evaluate the performance of current transient thermal models when adapted to low energy buildings. This work describes a numerical model to simulate a single room, using a refined spatial three-dimensional description of heat conduction in the envelope but a single air node is considered. The model has been developed for environmental conditions that vary over short time-steps and has integrated the projection of solar radiation through a window onto interior walls : the sun patch. The validation of the model has been done through a detailed comparison between model and measurements. The in situ experiment has been carried out in one of the BESTlab cells (EDF R&D). The sun patch has been followed by a camera to validate its calculated position and surface. Temperature measurements by thermocouples and by thermal cameras have been compared to the models outputs. Differences between air and surface temperatures measured and simulated were never above 1.5 ˚C and mean errors reached 0.5 ˚C. The two innovations of the model have then be proven. Using minute wise weather data and inputs associated to an adaptative solver, enabled to pull down simulation errors : in May maximal differences rised from 1 ˚C to 2 ˚C for respectivelly one minute and hourly wise inputs. More important errors are seen in summer whereas in winter, air temperatures simulated tend to more fluctuate around the set up temperature when the sampling step gets longer. Two one dimensional models, close to traditional taken simulation tools, were used. Model M 1D,sol supposed the incoming radiation to reach only the floor. A 1D model with sun patch movement, called 1D,parois , was also used. These two models evaluated the air temperature with an acceptable error. However, their surface temperatures were still subject to important errors. Thus, for temperature surfaces evaluation, both 1D model presented differences up to 20 ˚C for surfaces touched by the sun patch. In winter, the 3D model can predict heating energy consumptions overestimated by 6.5 % when M 1D,parois overestimated them by 11 % and M1D,sol by 22 %. The improvements brought by our model have been proven also for other cells with different thermal masses. For these cells, differences between M1D,sol and the 3D model could reach 4.5 ˚C. Differences seemed to be more important for low thermal mass cells, and the orientation of the building had a strong impact. This work has confirmed the necessity of representing more accuratelly the descriptions of the enveloppe for strongly insulated rooms. To improve the model, the anisothermal hypotheses of the air should be considered.Cette thĂšse s’inscrit dans le contexte du dĂ©veloppement de BĂątiments Basse Consommation. La conception de telles constructions les rend sensibles aux sollicitations internes. Aussi, les outils de thermique du bĂątiment existants ne sont pas adaptĂ©s pour simuler assez fidĂšlement ce type de bĂątiments, si bien qu’un modĂšle tridimensionnel et dynamique a Ă©tĂ© dĂ©veloppĂ© ici. Celui-ci prĂ©sente plusieurs particularitĂ©s : il s’appuie sur une discrĂ©tisation spatiale optimisĂ©e des parois, la tache solaire y est localisĂ©e et l’intĂ©gration des dynamiques des conditions environnementales est assurĂ©e par un solveur numĂ©rique Ă  pas de temps adaptatif et un seul nƓud d’air est considĂ©rĂ©. La validation du modĂšle s’est suivant une confrontation avec des mesures en conditions rĂ©elles rĂ©alisĂ©es dans une cellule de BESTlab d’EDF R&D. Un suivi visuel de la tache solaire a permis de confirmer sa bonne localisation par notre modĂšle. Des mesures de tempĂ©rature en surface complĂ©tĂ©es par des cartographies thermographiques ont Ă©tĂ© comparĂ©es aux champs de tempĂ©ratures simulĂ©s, montrant une bonne concordance. Les comparaisons de tempĂ©ratures d’air mesurĂ©es et simulĂ©es ont montrĂ© des rĂ©sidus ne dĂ©passant pas 1,5 ˚C, pour des erreurs moyennes de 0,5 ˚C. La pertinence des deux principales innovations du modĂšle a Ă©tĂ© ensuite dĂ©montrĂ©e : l’utilisation d’entrĂ©es Ă©chantillonnĂ©es Ă  la minute associĂ©es Ă  un solveur Ă  pas de temps adaptatif permet de minimiser les erreurs de simulation : en mi-saison, les rĂ©sidus maximaux sont respectivement de 1 ˚C et 2 ˚C pour des entrĂ©es Ă  la minute et Ă  l’heure. En hiver, les tempĂ©ratures d’air simulĂ©es tendent Ă  plus osciller autour de la consigne quand le pas d’échantillonnage des entrĂ©es s’allonge. Deux modĂšles unidimensionnels, reprĂ©sentatifs de modĂšles courants, M1D,sol diluant le rayonnement solaire sur le sol seul et M1D,parois le distribuant de façon homogĂšne sur les parois au prorata de la taille de la tache solaire censĂ©e les frappĂ©es, ne dĂ©gradent que lĂ©gĂšrement la prĂ©cision des calculs de tempĂ©rature d’air. Cependant, ces modĂšles 1D ne permettent pas de calcul des champs de tempĂ©ratures sur les parois si bien qu’ils prĂ©sentent des erreurs locales dĂ©passant 20 ˚C aux endroits touchĂ©s par la tache solaire. Enfin en hiver, le modĂšle 3D permet de prĂ©dire des consommations de chauffage surestimĂ©es de 6,5 % quand M 1D,parois les surestime de 11 % et M1D,sol de 22 %. Les amĂ©liorations apportĂ©es par notre modĂšle ont Ă©tĂ© confirmĂ©es pour d’autres types de cellules. D’ailleurs des Ă©carts plus importants entre M1D,sol et le modĂšle 3D ont Ă©tĂ© observĂ©s pour une cellule dont parois et sol ont des compositions trĂšs diffĂ©rentes, alors que l’orientation a aussi un impact. Ce travail confirme la nĂ©cessitĂ© de reprĂ©senter plus finement les phĂ©nomĂšnes physiques pour des locaux fortement isolĂ©s. Des amĂ©liorations sont Ă  intĂ©grer, comme la description de l’anisothermie de l’air

    A three dimensional thermal room and sun patch model to simulate the transient behaviour of an energy efficient building

    No full text
    Cette thĂšse s’inscrit dans le contexte du dĂ©veloppement de BĂątiments Basse Consommation. La conception de telles constructions les rend sensibles aux sollicitations internes. Aussi, les outils de thermique du bĂątiment existants ne sont pas adaptĂ©s pour simuler assez fidĂšlement ce type de bĂątiments, si bien qu’un modĂšle tridimensionnel et dynamique a Ă©tĂ© dĂ©veloppĂ© ici. Celui-ci prĂ©sente plusieurs particularitĂ©s : il s’appuie sur une discrĂ©tisation spatiale optimisĂ©e des parois, la tache solaire y est localisĂ©e et l’intĂ©gration des dynamiques des conditions environnementales est assurĂ©e par un solveur numĂ©rique Ă  pas de temps adaptatif et un seul nƓud d’air est considĂ©rĂ©. La validation du modĂšle s’est suivant une confrontation avec des mesures en conditions rĂ©elles rĂ©alisĂ©es dans une cellule de BESTlab d’EDF R&D. Un suivi visuel de la tache solaire a permis de confirmer sa bonne localisation par notre modĂšle. Des mesures de tempĂ©rature en surface complĂ©tĂ©es par des cartographies thermographiques ont Ă©tĂ© comparĂ©es aux champs de tempĂ©ratures simulĂ©s, montrant une bonne concordance. Les comparaisons de tempĂ©ratures d’air mesurĂ©es et simulĂ©es ont montrĂ© des rĂ©sidus ne dĂ©passant pas 1,5 ˚C, pour des erreurs moyennes de 0,5 ˚C. La pertinence des deux principales innovations du modĂšle a Ă©tĂ© ensuite dĂ©montrĂ©e : l’utilisation d’entrĂ©es Ă©chantillonnĂ©es Ă  la minute associĂ©es Ă  un solveur Ă  pas de temps adaptatif permet de minimiser les erreurs de simulation : en mi-saison, les rĂ©sidus maximaux sont respectivement de 1 ˚C et 2 ˚C pour des entrĂ©es Ă  la minute et Ă  l’heure. En hiver, les tempĂ©ratures d’air simulĂ©es tendent Ă  plus osciller autour de la consigne quand le pas d’échantillonnage des entrĂ©es s’allonge. Deux modĂšles unidimensionnels, reprĂ©sentatifs de modĂšles courants, M1D,sol diluant le rayonnement solaire sur le sol seul et M1D,parois le distribuant de façon homogĂšne sur les parois au prorata de la taille de la tache solaire censĂ©e les frappĂ©es, ne dĂ©gradent que lĂ©gĂšrement la prĂ©cision des calculs de tempĂ©rature d’air. Cependant, ces modĂšles 1D ne permettent pas de calcul des champs de tempĂ©ratures sur les parois si bien qu’ils prĂ©sentent des erreurs locales dĂ©passant 20 ˚C aux endroits touchĂ©s par la tache solaire. Enfin en hiver, le modĂšle 3D permet de prĂ©dire des consommations de chauffage surestimĂ©es de 6,5 % quand M 1D,parois les surestime de 11 % et M1D,sol de 22 %. Les amĂ©liorations apportĂ©es par notre modĂšle ont Ă©tĂ© confirmĂ©es pour d’autres types de cellules. D’ailleurs des Ă©carts plus importants entre M1D,sol et le modĂšle 3D ont Ă©tĂ© observĂ©s pour une cellule dont parois et sol ont des compositions trĂšs diffĂ©rentes, alors que l’orientation a aussi un impact. Ce travail confirme la nĂ©cessitĂ© de reprĂ©senter plus finement les phĂ©nomĂšnes physiques pour des locaux fortement isolĂ©s. Des amĂ©liorations sont Ă  intĂ©grer, comme la description de l’anisothermie de l’air.Low energy building constructions become sensitive to internal gains : any internal heating source has an impact on the envelope. Therefore, it is important to evaluate the performance of current transient thermal models when adapted to low energy buildings. This work describes a numerical model to simulate a single room, using a refined spatial three-dimensional description of heat conduction in the envelope but a single air node is considered. The model has been developed for environmental conditions that vary over short time-steps and has integrated the projection of solar radiation through a window onto interior walls : the sun patch. The validation of the model has been done through a detailed comparison between model and measurements. The in situ experiment has been carried out in one of the BESTlab cells (EDF R&D). The sun patch has been followed by a camera to validate its calculated position and surface. Temperature measurements by thermocouples and by thermal cameras have been compared to the models outputs. Differences between air and surface temperatures measured and simulated were never above 1.5 ˚C and mean errors reached 0.5 ˚C. The two innovations of the model have then be proven. Using minute wise weather data and inputs associated to an adaptative solver, enabled to pull down simulation errors : in May maximal differences rised from 1 ˚C to 2 ˚C for respectivelly one minute and hourly wise inputs. More important errors are seen in summer whereas in winter, air temperatures simulated tend to more fluctuate around the set up temperature when the sampling step gets longer. Two one dimensional models, close to traditional taken simulation tools, were used. Model M 1D,sol supposed the incoming radiation to reach only the floor. A 1D model with sun patch movement, called 1D,parois , was also used. These two models evaluated the air temperature with an acceptable error. However, their surface temperatures were still subject to important errors. Thus, for temperature surfaces evaluation, both 1D model presented differences up to 20 ˚C for surfaces touched by the sun patch. In winter, the 3D model can predict heating energy consumptions overestimated by 6.5 % when M 1D,parois overestimated them by 11 % and M1D,sol by 22 %. The improvements brought by our model have been proven also for other cells with different thermal masses. For these cells, differences between M1D,sol and the 3D model could reach 4.5 ˚C. Differences seemed to be more important for low thermal mass cells, and the orientation of the building had a strong impact. This work has confirmed the necessity of representing more accuratelly the descriptions of the enveloppe for strongly insulated rooms. To improve the model, the anisothermal hypotheses of the air should be considered

    Local climate zone approach on local and micro scales: Dividing the urban open space

    No full text
    International audienceThis article is a formalisation of the local climate zone (LCZ) classification on a local and micro scales. It is also an attempt to transpose this classification to a fine grained level of detail. The urban space is divided into virtual sensors for which five morphological indicators are calculated. Therefore, this work exposes a comparison of two methods dividing the urban space: the Delaunay triangulation versus a Skeletonization. These algorithms are based on a standard vector dataset and integrated in a free and open source Geographic Information System. These algorithms are applied to New York and districts of Nantes. The skeletonization presents the advantage of pulling down the calculation time without affecting the accuracy. Moreover, the methodology proposed is reproducible everywhere. In addition, the major LCZ obtained on the districts of Nantes are verified by comparison to previous measurements and classifications, which supports the results presented in this paper. Finally, the methodology and functionalities developed in this paper seem useful for the urban climate community and town planners, because LCZ can provide input data for numerical climate models that incorporate urban canopy parameters to forecast climate variables and forecast Urban heat island (UHI)

    Assessing the effects of urban street trees on building cooling energy needs: the role of foliage density and planting pattern

    No full text
    International audienceThis study presents an one-way coupling approach between the ENVI-met microclimate model and the EnergyPlus building energy simulation program, to assess the effect of the urban greenery on the improvement of the buildings’ cooling energy needs, in a dense urban area in Thessaloniki, Greece. Three commonly encountered urban tree species with different foliage densities are analyzed, whereas 2 different planting patterns are also considered. The obtained results indicate that the potential of trees on cooling the ambient air temperature and regulating the buildings cooling energy needs is mainly attributed to the radiative shading and the respective reduction of the solar heat gains of the exposed building façades. Moreover, the reduction of the building’s cooling energy demand due to the addition of trees is directly related to their foliage density and their planting pattern. The higher energy savings up to 54% have been achieved when the trees formed a continuous shading canopy and for the Leaf Area Density of 2.5 m2/m3. Yet, the cooling potential of street trees has been found rather minor when they were not tall enough to shade the biggest part of the outer building façade

    Impact of sun patch and three dimensional heat transfers descriptions on the accuracy of a building’s thermal behavior prediction

    No full text
    International audienceA thermal transient numerical model (M3D) which considers the three-dimensional heat transfer through the envelope of a room and the sun patch through a window has been developed and validated in a recent paper. The use of a refined spatial and temporal discretization allows considering more precise interactions between the sun patch projection with the structure and quick time perturbations in the stresses. This is particularly necessary for highly insulated and low energy consumption buildings. In this new paper, M3D is subsequently transformed to simpler configurations, close to classical modelling thermal building simulation software that neglects the sun patch and the 3D heat transfer, in order to quantify the main contributions of this model. A first configuration is to consider one-dimensional heat conduction for the envelope and the transmitted solar radiation is only projected onto the floor (M1D). A second configuration considers also one-dimensional heat conduction but the transmitted beam radiation falls on each wall or floor that is impacted (M1D,sp). Comparison between experimental data and numerical results of these three models shows, as expected, that M1D and M1D,sp are less accurate than M3D. This is particularly true when wanting to evaluate surface temperature distributions or heating power evolution in winter

    Sun patch impact for the evaluation of operative temperatures distributions

    No full text
    International audienceA numerical model has been developed in order to accurately simulate the transient thermal behavior of a building (a single room). This model has already been described in (Rodler et al., 2013): the energy balance equations consider irradiation, convection, air enthalpy and three‐dimensional heat conduction. The particularity of the program is that it projects the sun patch on the inner walls.The operative and mean radiant temperature are important parameters for the evaluation of comfort indices. Their calculations require the air temperature values and the surfaces temperatures field which vary in the sunspace as a function of position and disposition of the person. We show the importance of the knowledge of the operative temperature distribution and its consequences on the thermal comfort. The refined 3D model is compared to the one obtained by the classical distribution of the solar radiation with a 1D conduction approach and by assuming all incoming radiation touches the floor. The sun patch impact and its three dimension effect are finally discussed for the comfort evaluation of a low inertia cell

    Development of a composite model for predicting urban surface temperature distribution in the context of GIS

    No full text
    International audienceAbstract In this paper, we present a new model for simulating radiation heat transfer and surface temperatures in urban environments, which is a prerequisite for simulating outdoor mean radiant temperature for pedestrians. We propose a new model whose novelty lies in a new algorithm for simulating diffuse radiation by combining the Nusselt unit sphere method and Monte Carlo ray tracing algorithm. This combined use of different methods is automatically activated depending on the complexity of the scene and, in particular, the arrangement of the facets facing each other. The model is implemented in a Python-based tool, t4gpd, which combines the capabilities of geographic information science and related technologies (GIS &T) with efficient ray-casting solutions. The model is tested on a theoretical mock-up of nine virtual buildings in Nantes under summer and winter weather conditions and compared with SOLENE-Microclimat results. The view factor and solar radiation flux simulation results agree well with the reference solution, with a significant reduction in simulation computation time. However, the model has limitations due to the exclusion of vegetation evapotranspiration characteristics, wind profile model, and soil with complete stratigraphy. Overall, this new model provides an efficient tool for simulating outdoor pedestrian thermal comfort in urban environments and has potential for further development and validation
    corecore