46 research outputs found

    Genome-wide association mapping for kernel and malting quality traits using hostorical European barley records

    Get PDF
    Malting quality is an important trait in breeding barley (Hordeum vulgare L.). It requires elaborate, expensive phenotyping, which involves micro-malting experiments. Although there is abundant historical information available for different cultivars in different years and trials, that historical information is not often used in genetic analyses. This study aimed to exploit historical records to assist in identifying genomic regions that affect malting and kernel quality traits in barley. This genome-wide association study utilized information on grain yield and 18 quality traits accumulated over 25 years on 174 European spring and winter barley cultivars combined with diversity array technology markers. Marker-trait associations were tested with a mixed linear model. This model took into account the genetic relatedness between cultivars based on principal components scores obtained from marker information. We detected 140 marker-trait associations. Some of these associations confirmed previously known quantitative trait loci for malting quality (on chromosomes 1H, 2H, and 5H). Other associations were reported for the first time in this study. The genetic correlations between traits are discussed in relation to the chromosomal regions associated with the different traits. This approach is expected to be particularly useful when designing strategies for multiple trait improvements

    Transport properties of dense fluid argon

    Full text link
    We calculate using molecular dynamics simulations the transport properties of realistically modeled fluid argon at pressures up to 50GPa\simeq 50GPa and temperatures up to 3000K3000K. In this context we provide a critique of some newer theoretical predictions for the diffusion coefficients of liquids and a discussion of the Enskog theory relevance under two different adaptations: modified Enskog theory (MET) and effective diameter Enskog theory. We also analyze a number of experimental data for the thermal conductivity of monoatomic and small diatomic dense fluids.Comment: 8 pages, 6 figure

    Development and characterization of polymorphic microsatellite markers in taro (Colocasia esculenta)

    Get PDF
    Microsatellite-containing sequences were isolated from enriched genomic libraries of taro (Colocasia esculenta (L.) Schott). The sequencing of 269 clones yielded 77 inserts containing repeat motifs. The majority of these (81.7%) were dinucleotide or trinucleotide repeats. The GT/CA repeat motif was the most common, accounting for 42% of all repeat types. From a total of 43 primer pairs designed, 41 produced markers within the expected size range. Sixteen (39%) were polymorphic when screened against a restricted set of taro genotypes from Southeast Asia and Oceania, with an average of 3.2 alleles detected on each locus. These markers represent a useful resource for taro germplasm management, genome mapping, and marker-assisted selection

    Strategies for Controlled Placement of Nanoscale Building Blocks

    Get PDF
    The capability of placing individual nanoscale building blocks on exact substrate locations in a controlled manner is one of the key requirements to realize future electronic, optical, and magnetic devices and sensors that are composed of such blocks. This article reviews some important advances in the strategies for controlled placement of nanoscale building blocks. In particular, we will overview template assisted placement that utilizes physical, molecular, or electrostatic templates, DNA-programmed assembly, placement using dielectrophoresis, approaches for non-close-packed assembly of spherical particles, and recent development of focused placement schemes including electrostatic funneling, focused placement via molecular gradient patterns, electrodynamic focusing of charged aerosols, and others

    The use of wheat/goatgrass introgression lines for the detection of gene(s) determining resistance to septoria tritici blotch (Mycosphaerella graminicola)

    No full text
    At the IPK Gatersleben a series of 85 bread wheat (T. aestivum)/goatgrass (Aegilops tauschii) introgression lines was developed recently. Based on the knowledge that chromosome 7D of this particular Ae. tauschii is a donor of resistance to septoria tritici blotch (Mycosphaerella graminicola), a sub-set of thirteen chromosome 7D introgression lines was investigated along with the susceptible recipient variety ‘Chinese Spring’ (CS) and the resistant donor line ‘CS (Syn 7D)’. The material was inoculated with two Argentinian isolates of the pathogen (IPO 92067 and IPO 93014) at both the seedlings (two leaf) and adult (tillering) stages at two locations over 2 years (2003, 2004). The resistance was effective against both isolates and at both developmental stages, and the resistance locus maps to the centromeric region of chromosome arm 7DS. On the basis of its relationship with the microsatellite marker Xgwm44, it is likely that the gene involved is Stb5. Stb5 is therefore apparently effective against M. graminicola isolates originating from both Europe and South America

    Molecular mapping of quantitative trait loci determining resistance to septoria tritici blotch caused by Mycosphaerella graminicola in wheat

    No full text
    A set of 65 recombinant inbred lines of the ‘International Triticeae Mapping Initiative’ mapping population (‘W7984’ × ‘Opata 85’) was analysed for resistance to septoria tritici blotch at the seedling and adult plant stages. The mapping population was inoculated with two Argentinean isolates (IPO 92067 and IPO 93014). At the seedling stage, three loci were discovered on the short arms of chromosomes 1D, 2D and 6B. All three loci were detected with both isolates. At the adult plant stage, two isolate-specific QTL were found. The loci specific for isolates IPO 92067 and IPO 93014 were mapped on the long arms of chromosomes 3D and 7B, respectively

    Integration of dinucleotite microsatellites from hexaploid bread wheat into a genetic linkage map of durum wheat

    No full text
    Seventy nine microsatellite markers from hexaploid bread wheat (T. aestivum L.) were integrated into a genetic linkage map of durum wheat (T. turgidum ssp. durum (Desf.) Huns.) created by RFLP segregation data from a population of 65 recombinant inbred lines. The results indicate a relatively even distribution of microsatellite loci and demonstrate that microsatellite markers from hexaploid wheat provide an excellent source of molecular markers for use in the genetics and breeding of durum wheat

    Integration of dinucleotide microsatellites from hexaploid bread wheat into a genetic linkage map of durum wheat.

    No full text
    Seventy nine microsatellite markers from hexaploid bread wheat (T. aestivum L.) were integrated into a genetic linkage map of durum wheat (T. turgidum ssp. durum (Desf.) Huns.) created by RFLP segregation data from a population of 65 recombinant inbred lines. The results indicate a relatively even distribution of microsatellite loci and demonstrate that microsatellite markers from hexaploid wheat provide an excellent source of molecular markers for use in the genetics and breeding of durum wheat
    corecore