3 research outputs found

    A novel optical biosensor for the early diagnosis of sepsis and severe Covid-19: the PROUD study

    No full text
    Background: The accuracy of a new optical biosensor (OB) point-of-care device for the detection of severe infections is studied. Methods: The OB emits different wavelengths and outputs information associated with heart rate, pulse oximetry, levels of nitric oxide and kidney function. At the first phase, recordings were done every two hours for three consecutive days after hospital admission in 142 patients at high-risk for sepsis by placing the OB on the forefinger. At the second phase, single recordings were done in 54 patients with symptoms of viral infection; 38 were diagnosed with COVID-19. Results: At the first phase, the cutoff value of positive likelihood of 18 provided 100% specificity and 100% positive predictive value for the diagnosis of sepsis. These were 87.5 and 91.7% respectively at the second phase. OB diagnosed severe COVID-19 with 83.3% sensitivity and 87.5% negative predictive value. Conclusions: The studied OB seems valuable for the discrimination of infection severity. © 2020, The Author(s)

    First observations of speed of light tracks by a fluorescence detector looking down on the atmosphere

    Get PDF
    International audienceEUSO-Balloon is a pathfinder mission for the Extreme Universe Space Observatory onboard the Japanese Experiment Module (JEM-EUSO). It was launched on the moonless night of the 25th of August 2014 from Timmins, Canada. The flight ended successfully after maintaining the target altitude of 38 km for five hours. One part of the mission was a 2.5 hour underflight using a helicopter equipped with three UV light sources (LED, xenon flasher and laser) to perform an inflight calibration and examine the detectors capability to measure tracks moving at the speed of light. We describe the helicopter laser system and details of the underflight as well as how the laser tracks were recorded and found in the data. These are the first recorded laser tracks measured from a fluorescence detector looking down on the atmosphere. Finally, we present a first reconstruction of the direction of the laser tracks relative to the detector

    First observations of speed of light tracks by a fluorescence detector looking down on the atmosphere

    No full text
    corecore