591 research outputs found

    Groundwater Variability Across Temporal and Spatial Scales in the Central and Northeastern U.S.

    Get PDF
    Depth-to-water measurements from 181 monitoring wells in unconfined or semi-confined aquifers in nine regions of the central and northeastern U.S. were analyzed. Groundwater storage exhibited strong seasonal variations in all regions, with peaks in spring and lows in autumn, and its interannual variability was nearly unbounded, such that the impacts of droughts, floods, and excessive pumping could persist for many years. We found that the spatial variability of groundwater storage anomalies (deviations from the long term mean) increases as a power function of extent scale (square root of area). That relationship, which is linear on a log-log graph, is common to other hydrological variables but had never before been shown with groundwater data. We describe how the derived power function can be used to determine the number of wells needed to estimate regional mean groundwater storage anomalies with a desired level of accuracy, or to assess uncertainty in regional mean estimates from a set number of observations. We found that the spatial variability of groundwater storage anomalies within a region often increases with the absolute value of the regional mean anomaly, the opposite of the relationship between soil moisture spatial variability and mean. Recharge (drainage from the lowest model soil layer) simulated by the Variable Infiltration Capacity (VIC) model was compatible with observed monthly groundwater storage anomalies and month-to-month changes in groundwater storage

    Groundwater and Terrestrial Water Storage

    Get PDF
    Terrestrial water storage (TWS) comprises groundwater, soil moisture, surface water, snow,and ice. Groundwater typically varies more slowly than the other TWS components because itis not in direct contact with the atmosphere, but often it has a larger range of variability onmultiannual timescales (Rodell and Famiglietti, 2001; Alley et al., 2002). In situ groundwaterdata are only archived and made available by a few countries. However, monthly TWSvariations observed by the Gravity Recovery and Climate Experiment (GRACE; Tapley et al.,2004) satellite mission, which launched in 2002, are a reasonable proxy for unconfinedgroundwater at climatic scales

    Progress in material design for biomedical applications

    Get PDF
    Biomaterials that interface with biological systems are used to deliver drugs safely and efficiently; to prevent, detect, and treat disease; to assist the body as it heals; and to engineer functional tissues outside of the body for organ replacement. The field has evolved beyond selecting materials that were originally designed for other applications with a primary focus on properties that enabled restoration of function and mitigation of acute pathology. Biomaterials are now designed rationally with controlled structure and dynamic functionality to integrate with biological complexity and perform tailored, high-level functions in the body. The transition has been from permissive to promoting biomaterials that are no longer bioinert but bioactive. This perspective surveys recent developments in the field of polymeric and soft biomaterials with a specific emphasis on advances in nano- to macroscale control, static to dynamic functionality, and biocomplex materials.National Institutes of Health. National Heart, Lung, and Blood Institute (Ruth L. Kirschstein National Research Service Award (F32HL1220090)

    Benefits and pitfalls of GRACE data assimilation: A case study of terrestrial water storage depletion in India

    Get PDF
    This study investigates some of the benefits and drawbacks of assimilating terrestrial water storage (TWS) observations from the Gravity Recovery and Climate Experiment (GRACE) into a land surface model over India. GRACE observes TWS depletion associated with anthropogenic groundwater extraction in northwest India. The model, however, does not represent anthropogenic groundwater withdrawals and is not skillful in reproducing the interannual variability of groundwater. Assimilation of GRACE TWS introduces long-term trends and improves the interannual variability in groundwater. But the assimilation also introduces a negative trend in simulated evapotranspiration, whereas in reality evapotranspiration is likely enhanced by irrigation, which is also unmodeled. Moreover, in situ measurements of shallow groundwater show no trend, suggesting that the trends are erroneously introduced by the assimilation into the modeled shallow groundwater, when in reality the groundwater is depleted in deeper aquifers. The results emphasize the importance of representing anthropogenic processes in land surface modeling and data assimilation systems

    Groundwater Depletion in the Middle East from GRACE with Implications for Transboundary Water Management in the Tigris-Euphrates-Western Iran Region

    Get PDF
    In this study, we use observations from the Gravity Recovery and Climate Experiment (GRACE) satellite mission to evaluate freshwater storage trends in the north-central Middle East, including portions of the Tigris and Euphrates River Basins and western Iran, from January 2003 to December 2009. GRACE data show an alarming rate of decrease in total water storage of approximately -27.2 plus or minus 0.6 millimeters per year equivalent water height, equal to a volume of 143.6 cubic kimometers during the course of the study period. Additional remote-sensing information and output from land surface models were used to identify that groundwater losses are the major source of this trend. The approach used in this study provides an example of ''best current capabilities'' in regions like the Middle East, where data access can be severely limited. Results indicate that the region lost 17.3 plus or minus 2.1 millimeters per year equivalent water height of groundwater during the study period, or 91.3 plus or minus 10.9 cubic kilometers in volume. Furthermore, results raise important issues regarding water use in transboundary river basins and aquifers, including the necessity of international water use treaties and resolving discrepancies in international water law, while amplifying the need for increased monitoring for core components of the water budget

    Integrating Data from GRACE and Other Observing Systems for Hydrological Research and Applications

    Get PDF
    The Gravity Recovery and Climate Experiment (GRACE) mission provides a unique view of water cycle dynamics, enabling the only space based observations of water on and beneath the land surface that are not limited by depth. GRACE data are immediately useful for large scale applications such as ice sheet ablation monitoring, but they are even more valuable when combined with other types of observations, either directly or within a data assimilation system. Here we describe recent results of hydrological research and applications projects enabled by GRACE. These include the following: 1) global monitoring of interannual variability of terrestrial water storage and groundwater; 2) water balance estimates of evapotranspiration over several large river basins; 3) NASA's Energy and Water Cycle Study (NEWS) state of the global water budget project; 4) drought indicator products now being incorporated into the U.S. Drought Monitor; 5) GRACE data assimilation over several regions

    Improving Land-Surface Model Hydrology: Is an Explicit Aquifer Model Better than a Deeper Soil Profile?

    Get PDF
    Land surface models (LSMs) are computer programs, similar to weather and climate prediction models, which simulate the storage and movement of water (including soil moisture, snow, evaporation, and runoff) after it falls to the ground as precipitation. It is not currently possible to measure all of the variables of interest everywhere on Earth with sufficient accuracy. Hence LSMs have been developed to integrate the available information, including satellite observations, using powerful computers, in order to track water storage and redistribution. The maps are used to improve weather forecasts, support water resources and agricultural applications, and study the Earth's water cycle and climate variability. Recently, the models have begun to simulate groundwater storage. In this paper, we compare several possible approaches, and examine the pitfalls associated with trying to estimate aquifer parameters (such as porosity) that are required by the models. We find that explicit representation of groundwater, as opposed to the addition of deeper soil layers, considerably decreases the sensitivity of modeled terrestrial water storage to aquifer parameter choices. We also show that approximate knowledge of parameter values is not sufficient to guarantee realistic model performance: because interaction among parameters is significant, they must be prescribed as a harmonious set

    Emerging Trends in Global Freshwater Availability

    Get PDF
    Freshwater availability is changing worldwide. Here we quantify 34 trends in terrestrial water storage (TWS) observed by the Gravity Recovery and Climate Experiment (GRACE) satellites during 2002-2016 and categorize their drivers as natural interannual variability, unsustainable groundwater consumption, or climate change. Several of these trends had been lacking thorough investigation and attribution, including massive changes in northwestern China and the Okavango delta. Others are consistent with climate model predictions. This observation-based assessment of how the world's water landscape is responding to human impacts and climate variations provides a blueprint for evaluating and predicting emerging threats to water and food security

    The SmartTarget BIOPSY trial: A prospective, within-person randomised, blinded trial comparing the accuracy of visual-registration and MRI/ultrasound image-fusion targeted biopsies for prostate cancer risk stratification

    Get PDF
    Background: Multiparametric magnetic resonance imaging (mpMRI)-targeted prostate biopsies can improve detection of clinically significant prostate cancer and decrease the overdetection of insignificant cancers. Whether visual-registration targeting is sufficient or if augmentation with image-fusion software is needed is unknown. Objective: To assess concordance between the two methods. Design, Setting, and Participants: We conducted a blinded, within-person randomised, paired validating clinical trial. From 2014 to 2016, 141 men who had undergone a prior (positive or negative) transrectal ultrasound biopsy and had a discrete lesion on mpMRI (score 3 to 5) requiring targeted transperineal biopsy were enrolled at a UK academic hospital; 129 underwent both biopsy strategies and completed the study. Intervention: The order of performing biopsies using visual-registration and a computer-assisted MRI/ultrasound image-fusion system (SmartTarget) on each patient was randomised. The equipment was reset between biopsy strategies to mitigate incorporation bias. Outcome Measurements and Statistical Analysis: The proportion of clinically significant prostate cancer (primary outcome: Gleason pattern ≥3+4=7, maximum cancer core length ≥4 mm; secondary outcome: Gleason pattern ≥4+3=7, maximum cancer core length ≥6 mm) detected by each method was compared using McNemar's test of paired proportions. Results and Limitations: The two strategies combined detected 93 clinically significant prostate cancers (72% of the cohort). Each strategy individually detected 80/93 (86%) of these cancers; each strategy detected 13 cases missed by the other. Three patients experienced adverse events related to biopsy (urinary retention, urinary tract infection, nausea and vomiting). No difference in urinary symptoms, erectile function, or quality of life between baseline and follow-up (median 10.5 weeks) was observed. The key limitation was lack of parallel-group randomisation and limit on number of targeted cores. Conclusions: Visual-registration and image-fusion targeting strategies combined had the highest detection rate for clinically significant cancers. Targeted prostate biopsy should be performed using both strategies together. Patient Summary: We compared two prostate cancer biopsy strategies: visual-registration and image-fusion. The combination of the two strategies found the most clinically important cancers and should be used together whenever targeted biopsy is being performed
    • …
    corecore