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Key Points  

• spatial variability of groundwater storage anomalies increases as a power function 

of extent 

• spatial variability of groundwater storage anomalies depends on mean 

groundwater storage 

• Seasonality of groundwater storage is similar to that of modeled recharge  

 

  



  

Abstract 

Depth-to-water measurements from 181 monitoring wells in unconfined or semi-confined 

aquifers in nine regions of the central and northeastern U.S. were analyzed.  Groundwater 

storage exhibited strong seasonal variations in all regions, with peaks in spring and lows in 

autumn, and its interannual variability was nearly unbounded, such that the impacts of droughts, 

floods, and excessive pumping could persist for many years. We found that the spatial variability 

of groundwater storage anomalies (deviations from the long term mean) increases as a power 

function of extent scale (square root of area).  That relationship, which is linear on a log-log 

graph, is common to other hydrological variables but had never before been shown with 

groundwater data.  We describe how the derived power function can be used to determine the 

number of wells needed to estimate regional mean groundwater storage anomalies with a desired 

level of accuracy, or to assess uncertainty in regional mean estimates from a set number of 

observations.  We found that the spatial variability of groundwater storage anomalies within a 

region often increases with the absolute value of the regional mean anomaly, the opposite of the 

relationship between soil moisture spatial variability and mean.  Recharge (drainage from the 

lowest model soil layer) simulated by the Variable Infiltration Capacity (VIC) model was 

compatible with observed monthly groundwater storage anomalies and month-to-month changes 

in groundwater storage.             

  



  

 

1. Introduction 

Aquifers are a vital source of fresh water.  The United Nations estimates that about 2.5 

billion people rely exclusively on groundwater for drinking water 

(http://unesdoc.unesco.org/images/0022/002207/220723E.pdf), and aquifers also provide 43% of 

the water used for crop irrigation worldwide (Siebert et al., 2010).  Recent studies have shown 

that withdrawals, mostly related to irrigation, in the last several decades have led to significant 

declines of groundwater in many regions (Rodell et al., 2009; Wada et al., 2010; Famiglietti et 

al., 2011; Feng et al., 2013; Voss et al., 2013).  Such declines, if not reversed, would lead to local 

and later regional dewatering of aquifers, which would have severe consequences for agricultural 

productivity and human health.  Further, ecosystems may be permanently altered by reduced 

baseflow to streams and wetlands (Stromberg et al., 1996).  Climate change is likely to 

exacerbate the situation in areas where precipitation rates, timing, and fraction as snowfall shift, 

while demands on water resources are likely to increase in a warmer environment (Green et al., 

2011; Taylor et al., 2012).  Improving observation and understanding of groundwater storage and 

its natural variability is essential if we are to preserve and better manage this precious resource in 

the future (Famiglietti and Rodell; 2013).     

Groundwater varies slowly relative to soil moisture, surface water, and non-permanent 

snow cover, but it is dynamic on seasonal to interannual timescales (Rodell and Famiglietti, 

2001; Alley et al., 2002; Weider and Boutt, 2010).  Indeed, variations in terrestrial water storage, 

particularly groundwater storage, contribute to observed interannual and long term sea level 

changes (Konikow, 2011; Boening et al., 2012).  Studies have shown that seasonal variations of 



  

shallow groundwater are strongly influenced by climatologic variables including precipitation 

and evapotranspiration (Eltahir and Yeh, 1999).  Groundwater storage responds to atmospheric 

conditions integrated over weeks to years, and its variability is known to be correlated with 

climate signals such as the El Nino Southern Oscillation (ENSO) in certain regions (Barco et al., 

2010; Perez-Valdivia et al., 2012).  As a slow varying component of the water cycle, 

groundwater has long “memory” and can influence the long-term trends and inter-annual 

variability of runoff and evapotranspiration (Istanbulluoglu et al., 2012; Wang, 2012).  

Accurately representing its multi-scale variability in hydrological and climate prediction models 

is challenging, due in part to limited knowledge of how groundwater variability scales spatially 

and temporally.  Improved understanding of the scales of groundwater variability would benefit 

the development of such models. 

Depending on the application, groundwater monitoring network design may benefit from 

knowledge of spatial variability which determines the number of wells required to quantify the 

regional mean groundwater storage condition at a given time.   Studies on soil moisture have 

revealed that its spatial variability increases as a power function of extent (Famiglietti et al., 

2008; Brocca et al., 2012; Li and Rodell, 2013), thus providing a mathematical form to relate 

spatial variability to spatial scale. No such study has been conducted for groundwater.    Further, 

knowledge of groundwater scaling relationships would help to bridge gaps not only between 

field observations, but also between point and remote-sensing measurements.  For instance, 

terrestrial water storage anomalies obtained from the Gravity Recovery and Climate Experiment 

(GRACE) mission  have shown great promises for estimating groundwater storage changes in 

various regions  (Yeh et al., 2006; Rodell et al., 2007; Zaitchik et al., 2008; Rodell et al., 2009; 

Famiglietti et al., 2011; Voss et al., 2013; )  but  the application of GRACE is also limited by its 



  

low spatial resolution,  which is about 150,000 km2at mid-latitudes  (Rowlands et al., 2005; 

Swenson and Wahr, 2006).  Hence there is a significant need for information that would help to 

interpolate between sparsely distributed well observations and GRACE based groundwater 

storage change estimates.   

We examined the temporal and spatial variability of groundwater storage in nine regions 

of the U.S. based on monitoring well data archived by the USGS and the Illinois State Water 

Survey.  In this study, “scale-dependency” refers to the dependency of spatial variability on 

extent, which is one of the scale triplet defined by Western and Blösch (1999) and indicates the 

dimension length covering all measurements.  In addition to in situ data, North America Land 

Data Assimilation System (NLDAS-2, Xia et al., 2012a) precipitation forcing data and simulated 

groundwater recharge from the NLDAS-embedded VIC land surface model were analyzed.  

These were used to investigate the interaction between groundwater and atmospheric forcing and 

to corroborate inferred groundwater behaviors.     

                             

2. Data and Methods 

 Fig. 1 shows the locations of observation wells in Long Island (New York), New Jersey, 

Massachusetts, Pennsylvania and four sub-basins of the Mississippi River basin: the Upper 

Mississippi, Ohio-Tennessee, combined Red River and Lower Mississippi (hereafter referred to 

as “Red-LM”), and Missouri basins.  The area and the number of wells within the boundary of 

each region are provided in Table 1.  This data set has been previously used, in part or in whole, 

for validating GRACE derived or model estimated groundwater storage anomalies (Rodell et al., 

2007; Zaitchik et al., 2008; Li and Rodell, 2014).   The wells were culled from a much larger 



  

archive through examination of the data and available metadata.  Each well was determined to be 

open to an unconfined or semi-confined aquifer and representative of the local water table, i.e., 

exhibiting minimal direct effects of pumping or injections.  Records from many locations were 

discarded due to brevity or large data gaps.    

The majority of the data records were obtained from the USGS Groundwater Watch 

website (http://groundwaterwatch.usgs.gov/) and the rest from the larger USGS National Water 

Information System and the Illinois State Water Survey.  Most of the sites logged one 

measurement per month; when multiple measurements were available per month, an average 

monthly value was used.  The lengths of the regional data records range from 10 to over 30 years 

(Table 1) which is sufficiently long to study the seasonality of groundwater.  The wells in Long 

Island, New Jersey, and Massachusetts are generally located in shallow sandy aquifers formed 

during the last glacial maximum.  Most wells in Pennsylvania are located in fractured rock 

formations that are likely semi-confined.  Wells in the Mississippi basin are installed in a diverse 

range of aquifer types, and their depths vary significantly.  The region-averaged well depth 

ranges from 9 m below the surface in Massachusetts to 86 m in Red-LM, and the average depth 

to water varies from 4 m to 17 m (Table 1).   

Because this study was only concerned with the variability of groundwater storage 

anomalies (departures from the long term mean) and not absolute quantity, we set the mean 

depth to water at each well to zero by subtracting the time series-mean from each measurement.  

Specific yield (Sy) estimates are needed to convert depth-to-water levels to water storage 

anomalies as equivalent heights of water, but Sy was not provided in the metadata.  The Sy values 

(see Table 1 for regional averages) were determined individually for each well based on 

published studies on the aquifer formation or, as a last resort, published Sy estimates for the 



  

aquifer type.  When multiple possible Sy values were found for a given well, a Sy within that 

range was selected based on the well depth and comparison of the dynamic range of water depths 

with those of neighboring wells.  For each well, groundwater storage anomalies relative to the 

series mean were computed by multiplying the monthly depth-to-water measurements (mean 

removed) by the specific yield, and then taking the additive inverse (negative) of each value 

(because storage increases as depth-to-water decreases).   

 NLDAS-2 (Xia et al., 2012a) precipitation forcing data are based on daily precipitation 

measurements from over 10,000 gauges which are temporally disaggregated using Doppler radar 

images and spatially interpolated to a 0.125º grid that encompasses the conterminous U.S. and 

parts of Mexico and Canada (Cosgrove et al., 2003).  NLDAS forcing spans 1979 to present and 

thus covers the entire period of our groundwater dataset.     

Due to lack of recharge observations, drainage from the bottom of the lowest soil layer 

simulated by the Variable Infiltration Capacity (VIC) land surface model, driven by NLDAS, 

was used as an approximation of groundwater recharge.  This drainage variable is often named 

“baseflow” or “subsurface runoff” in land surface models, which are misnomers that imply the 

water somehow circumvents aquifer storage and immediately enters the stream system.  To avoid 

confusion, we eschew the model terminology and instead use the terms “drainage” and 

“recharge” through the rest of the text.  VIC (Liang et al., 1994) simulates water and energy 

states (e.g., soil moisture and temperature) and fluxes (e.g., evapotranspiration and runoff) based 

on physical equations of the relevant processes on and within the land surface, using atmospheric 

forcing data (e.g., precipitation and solar radiation) to drive the model forward in time.  The 

evolution of soil moisture is simulated in three soil layers, with 10 cm for the top layer and 

spatially varying depths for the lower two layers which may reach a total depth of 2.5 m at some 



  

locations.  Drainage is derived using an empirical function that depends on the wetness of the 

lowest soil layer and a shape parameter.  VIC has been applied in a wide range of hydrological 

basins for modeling streamflow and other land surface processes (see Xia et al., 2012a).  Within 

NLDAS-2 settings (forcing and spatial resolution), Xia et al. (2012b) showed that VIC produced 

more accurate streamflow and evapotranspiration estimates than other NLDAS-2 models.    

Although VIC does not contain a groundwater component, its recharge estimates synthesize the 

combined effect of precipitation, evapotranspiration, surface runoff, soil wetness dynamics, and 

vertical flow through the soil, and thus are a reasonable substitute for groundwater recharge at 

model pixel and larger spatial scales and monthly to interannual temporal scales.  This is not 

unprecedented, as Crosbie et al. (2013) used soil drainage from a coupled water, energy, and 

carbon model as an approximation of groundwater recharge in studying the potential impact of 

climate change on groundwater.  Monthly NLDAS precipitation and VIC simulated recharge 

time series were extracted for the model pixels containing the well locations for use in the 

statistical calculations.     

In situ groundwater at a large number of sites exhibited small but significant trends 

(based on the Mann-Kendall test at the 5% significance level), with the regional average trend 

ranging from -0.018 cm/month in Red-LM to 0.077 cm/month in New Jersey.  NLDAS 

precipitation and VIC recharge did not have significant trends in any regions except 

Massachusetts, where both exhibited significant trends at some sites, but the average trend was 

still small (around 0.004 cm/month).  Because long term linear trends can affect the correlations 

between groundwater storage anomalies and other variables at shorter time scales, which is the 

focus of this study, the best-fit linear trend was removed from groundwater storage anomalies 



  

and recharge as a first step.  We determined that removing the trend did not have a large impact 

on the results.       

 Monthly spatial means and standard deviations (representing spatial variability) of 

groundwater storage anomalies were calculated based on data from the observation wells in each 

of the nine study regions.  Means and standard deviations of precipitation and recharge for each 

region were similarly calculated using data extracted from the pixels containing well sites.  

Temporal variability, including seasonality, and temporal correlations were calculated based on 

the regional mean time series.  Unless otherwise stated, mean groundwater storage anomalies, 

mean recharge, and mean precipitation refer to the regional means of those fields. 

 Groundwater discharge (baseflow to streams, spring flow, submarine groundwater 

discharge, uptake by phreatophyte roots, and withdrawals from wells) was estimated for each 

region and month as the residual of a simple mass balance equation, 

 discharge  =  recharge - GW (1)

where GW is the monthly change in groundwater storage, which was approximated as the 

difference between the groundwater storage anomaly at the current month and that of the 

previous month.  Ideally, if daily groundwater observations were available, GW would have 

been calculated as the difference between groundwater storage anomalies on the first and last 

days of the month, but averaged over longer periods our approximation is reasonable.  As 

previously described, NLDAS/VIC provided the recharge estimates.   

 

3. Results 



  

3.1 Spatial mean 

Fig. 2   plots the time series of monthly regional mean groundwater storage anomalies, 

spatial standard deviations, and NLDAS precipitation.  Groundwater storage anomalies from 

individual wells are also plotted in order to illustrate spatial variability.  Correlation between 

monthly groundwater storage anomalies and precipitation is apparent during prolonged wet and 

dry events.  For instance, the well-known drought that afflicted the Midwest and Northern Great 

Plains during 1987-1989 produced large negative storage anomalies in the Upper Mississippi and 

Missouri basins.  The relationship between mean groundwater storage anomaly and spatial 

variability will be discussed in more detail later, but upon quick inspection it can be seen that 

local maxima of spatial variability are coincident with both high and low mean anomalies.   

Table 2 shows that the unlagged correlation between monthly precipitation and monthly 

mean groundwater storage anomaly is generally low (less than 0.4).  One reason is that, as seen 

in Fig. 3, groundwater storage anomalies exhibit strong seasonality in all basins while the 

seasonal cycle of precipitation can be weak or out of phase with that of groundwater storage.  For 

example, in the Upper Mississippi and Missouri basins, annual minimum precipitation occurs in 

early spring, much earlier than that of groundwater storage anomalies.  It is possible that 

increased water demand in the summer and consequent withdrawals have some bearing on the 

observed seasonal cycle of groundwater storage, especially in groundwater-dependent Long 

Island.  However, groundwater recharge from VIC, which does not simulate human impacts on 

the water cycle, also exhibits a strong seasonal cycle that is consistent with that of groundwater 

storage (Figure 3), suggesting that precipitation type and evapotranspiration govern the seasonal 

variability of recharge and hence groundwater storage.  Supporting that hypothesis is the study of 

Steenhuis et al. (1985), who estimated recharge in Long Island using two different techniques 



  

and found that a high percentage of precipitation becomes recharge from late fall to early spring, 

while precipitation during the summer months does not contribute meaningfully to total annual 

recharge.   

Table 2 shows that groundwater storage anomalies are more strongly correlated with 

monthly groundwater recharge than with monthly precipitation.  That is not surprising 

considering the processes that occur between the incidence of precipitation on the land surface 

and groundwater recharge, including snowmelt (when applicable), infiltration, and drainage 

through the soil layers, all of which modulate the timing and quantity of recharge.  Those 

processes are incorporated into the simulation of recharge by the VIC model.  Annual maximum 

recharge often occurs in March to May while the annual minimum occurs in summer to early fall 

(Fig. 3).  That recharge peaks before precipitation in most of these regions may seem 

counterintuitive.  However, two factors contribute to the strong seasonality of groundwater 

recharge and its springtime peak.  One is that, in the northern and high altitude parts of these 

regions, seasonal snowpack can store and, during spring, release a significant portion of annual 

precipitation.  Snowmelt provides a slow, steady source of water that is ideal for diffuse 

recharge.  Second, by the time precipitation peaks in late spring to early summer, evaporative 

demand and plant root uptake have also increased, reducing the water available for groundwater 

recharge. 

The seasonal cycle of simulated groundwater recharge led that of observed groundwater 

storage by only about a month, resulting in their high correlation (3rd row of Table 2).  Recharge 

was even more highly correlated with groundwater storage change (calculated as the difference  

between the current and previous month’s groundwater storage anomalies) , which is logical 

because recharge is one of two components directly contributing storage change (equation (1)), 



  

while storage anomalies represent an accumulation of changes.  Groundwater storage exhibits 

larger seasonal fluctuations than recharge.  Seasonal variations in groundwater discharge appear 

to contribute appreciably to the annual cycle of groundwater storage (Fig. 3).  It is also possible 

that VIC underestimates recharge seasonality, which would affect the discharge estimates 

computed as a residual, or that the impacts of withdrawals for agriculture accentuated the 

groundwater storage decline during the growing season despite our attempts to eliminate wells 

directly influenced by pumping.  Nevertheless, the phase of discharge makes sense intuitively, as 

in most regions its maximum occurs sometime between the spring maximum groundwater levels 

(when seepage areas are enlarged and flow gradients increased, enhancing stream, spring, and 

submarine groundwater discharge) and summer (when withdrawals for irrigation and by plant 

roots peak).     

Fig. 4 plots time series of monthly mean groundwater storage anomalies, mean 

precipitation, and mean groundwater recharge with their seasonal cycles removed in order to 

highlight interannual variability.  A backward 6-month moving average was applied to 

precipitation and recharge to smooth out high frequency variability.  It can be seen that the non-

seasonal changes in the three variables are often well correlated.  Groundwater storage changes 

in the Red-LM basin often lagged precipitation anomalies by several months (best seen in the 

late 1990s and mid 2000s), reflecting the deeper aquifers in that region.  In Long Island, Upper 

Mississippi, and Missouri, the long term dynamic range of groundwater storage is much larger 

than the average seasonal variability (Fig. 3), as the former is stretched by prolonged wet or dry 

periods.  This result supports the finding by Wang (2012) that groundwater storage changes 

under persistent dry and wet conditions cannot be ignored in annual water budget analyses.   



  

The large inter-annual variability of groundwater storage anomalies is facilitated by the 

nearly unbounded range of groundwater storage.  That is to say, the water table only approaches 

an upper bound near surface water features or during exceptional floods; and aquifers rarely go 

dry in non-arid regions due to natural forces alone.  In contrast, soil moisture’s range is narrowly 

limited by saturation and wilting point, and thus its inter-annual variability is relatively small.       

   

      

 

                                        

 3.2 Spatial Variability  

Fig. 2 shows that spatial variability of groundwater storage anomalies, as manifested in 

the standard deviation, varies in time.  In general, it is larger when the mean groundwater storage 

anomaly is relatively low or high, such as during the severe drought in the Upper Mississippi 

basin in 1987-89 and the flooding in the same basin in 1993.               

            Fig. 5 further explores the dependency of spatial variability on the spatial mean 

groundwater storage anomaly.  Spatial variability increases with increasing magnitude of the 

groundwater storage anomaly (seen as an upward concave shape in Figure 5) in several regions 

including the four northeastern regions, the Ohio-Tennessee, and the Missouri basins. This is the 

reverse of the upward convexity of the relationship between soil moisture spatial variability and 

mean (Owe et al., 1982; Famiglietti et al., 2008; Rosenbaum et al. 2012).  As discussed in Li and 

Rodell (2013), while physical processes contribute to the upward convexity of the standard 



  

deviation versus mean soil moisture curve, it is ultimately controlled by the inflexible lower and 

upper bounds of a soil’s storage capacity (wilting point and saturation), which minimize 

variability when approached.  Unconfined groundwater storage, on the other hand, rarely 

confronts a hard limit, as discussed earlier.  As a result, the upper and lower bounds of storage 

are unlikely to restrict spatial variability of groundwater anomalies.  In fact, spatial variability 

tends to increase as groundwater storage approaches extremes.  This is because the dynamic 

range of groundwater storage is heterogeneous in space, and thus spatial differences in high and 

low groundwater anomalies during wet and dry periods are likely to be enhanced, leading to 

increased variability during these periods.   

 In the Upper Mississippi, Red-LM, and Mississippi an upward concave relationship is not 

observed, but neither is an upward convexity.  Part of the reason is that groundwater storage 

anomalies from certain wells may exhibit longer scale temporal variability with extremes 

misaligned with those at other wells (e.g., Fig. 2, the Red-LM panel).  As a result, spatial 

variability did not always peak at the time of maximum or minimum spatial means.  As indicated 

earlier, the longer term variability is likely associated with the deeper and wider range of well 

depths and low rates of groundwater recharge in Red-LM (Table 1).  This result suggests that the 

dependence of spatial variability on spatial mean may be obscured if the scale of groundwater 

temporal variability differs significantly among the wells in a region, which is likely when a 

wide range of water table depths exists.  

                          

3.3 Scale dependency of groundwater storage anomalies 



  

   Understanding the scale dependency of groundwater storage anomalies may be valuable 

for groundwater monitoring network design, interpreting remotely sensed observations related to 

groundwater, interpolating between sparse well observations, and identifying environmental 

controls on groundwater variability.  Past studies have shown that soil moisture spatial variability 

increases as a power function of extents (e.g., Famiglietti et al., 2008, Li and Rodell, 2013) 

which can be linearized through log-transformation (Hu et al., 1998): 

    (2)

where  is the spatial variability at extent , H is the slope of the linear relationship, indicating 

the strength of scale dependency, and C is the intercept at the y-axis.     

The scale dependency of groundwater storage anomalies is illustrated in Fig. 6(a), which 

plots the logarithm of spatial variability of groundwater storage anomalies as a function of log-

extent for each of the nine regions.  Due to the irregular shapes of the regions, spatial extents 

were calculated as the square root of the area of each region, which is consistent with the soil 

moisture scaling approach of Famiglietti et al. (2008).  Spatial variability was determined by 

averaging the spatial standard deviations over all months of data.  The log of spatial variability of 

groundwater storage anomalies increases more or less linearly as the log of extent increases.  

Deviations from the fitted line may be caused by differences in the dynamic ranges of 

groundwater storage among the regions, related to either climate or aquifer properties, or by well 

coverage heterogeneities.  To eliminate the influence of dynamic range differences on the scaling 

relationship, spatial variability was normalized by the temporal standard deviation of 

groundwater storage anomalies (averaged over all wells in each region), and the results are also 

plotted against spatial extent in Fig. 6(a).  The normalized data points form a nearly perfect 

straight line on a log-log graph.  As shown in Table 3, normalization slightly increased the slope 

CH += )log()log( λσ
λ



  

of the linear relationship and, by reining in the outliers, caused it to be significant at the 5% 

significant level.  An additional piece of evidence that the relationship theorized here is a real 

phenomenon is that normalized standard deviation in the Mississippi basin (the right-most point 

in Fig. 6(a)), where the well set comprises only those of the four sub-basins, is larger than that in 

any of the sub-basins (the next four points from right to left).   

 The observed scale dependency of groundwater storage variability logically leads to the 

question of whether the properties and processes influencing groundwater storage changes also 

exhibit scale dependency.  Fig.6 (b) shows that spatial variability of modeled recharge (also 

averaged over all months) is strongly and significantly dependent on spatial scale.  Variability of 

specific yield is only slightly dependent on spatial scale with an insignificant increasing slope 

(Table 3).  It is clear that normalization removed much of the impact of specific yield (note the 

change in correlation between the points in Fig. 6(c) and those in Fig. 6(a) before and after 

normalization).  Based on this limited information one might conclude that the scale-dependency 

of groundwater storage anomaly spatial variability is influenced more by climate than by aquifer 

properties.  However, other aquifer properties such as transmissivity, whose estimation is beyond 

the scope of this study, may be important. 

The stronger scale-dependency of the spatial variability of recharge (Table 3) compared 

to that of groundwater storage anomalies is probably related to both the spatial heterogeneity of 

precipitation and the tendency of groundwater storage to revert to a mean state over time via 

lateral flows and discharge.  It also may be due in part to the larger support (the area represented 

by each of the values that contribute to the mean, in this case 0.125º grid pixels) of the model 

compared with that of depth-to-water measurements.  Li and Rodell (2013) showed that soil 

moisture data with larger support exhibit stronger scale dependency than data with smaller 



  

support.  Further, Fig. 6(b) shows that normalization increased the scale dependency of recharge, 

probably because the dynamic ranges of recharge were smaller in the larger regions (see Fig. 3). 

To further investigate the environmental control on groundwater spatial variability, Fig. 7 

plots the temporal correlation between groundwater storage anomalies of any two wells (located 

in the same region) as a function of their separation distance.  A decreasing trend (as indicated by 

the solid line which is significant at the 5% level) in correlation is observed with increasing 

distances.  This is consistent with the previously demonstrated increasing spatial variability of 

groundwater storage anomalies with increasing region size.  Many low and even negative 

correlations are also observed at short separation distances (less than 200 km), which is not 

unexpected considering that hydrogeological conditions (aquifer formation and depth to 

groundwater) can change substantially over short distances.  For example, it was determined that 

a few very shallow wells in Massachusetts caused many negative correlations at short separation 

distances, as groundwater variations in those wells was much more strongly controlled by 

changing meteorological conditions than those in deeper wells. 

The derived log-log relationship between spatial variability of groundwater storage 

anomalies and regional extent may be useful for determining sampling sizes that are able to 

characterize variability of groundwater storage anomalies with a desired level of accuracy and 

enough precision for the particular application (e.g., water resources monitoring; validation of 

numerical models or remote sensing retrievals).  As we know, the number of point samples 

required to capture the spatial mean depends on the spatial variability of the field (Wang et al., 

2008): 



  

 
 (3)

where N is the number of samples required;  is the standard deviation of the sample data 

(spatial variability); d is the desired accuracy (absolute error) between the true (population) mean 

and the sample mean; is the Student’s t-distribution at the given significance level,  (5% 

was used below), and the degree of freedom (number of samples), N.  Since the N is unknown 

initially, an iterative method was used to estimate N based on given  and d (Wang et al., 2008).  

Equation (3) assumes the data are normally distributed, which is difficult to test given the small 

number of wells in some regions.  However, Fig.2 shows that groundwater storage anomalies are 

generally close to their mean with only a few outliers, which is a behavior of normal 

distributions.   

Equation (3) demands that more samples are needed if the field is highly heterogeneous 

or if the desired accuracy is higher.  We substituted the slope and y-intercept for the non-

normalized groundwater storage spatial variability from Table 3 into equation (2), and then 

combined equations (2) and (3) to determine the number of wells needed to estimate the mean 

groundwater anomaly at a given error level:  
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Here we define the extent, , as the square root of the study area.  Equation (4) can also be 

rearranged to estimate the accuracy of regional mean groundwater anomalies based on the 

number of wells: 
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Fig. 8 plots the solutions of equation (4) for various levels of desired accuracy (absolute 

error).  The number of wells required increases as the extent increases but the rate of increase 

gradually subsides due to the power function.  Also plotted in Fig. 8 are the numbers of wells vs. 

the spatial extent for each of the nine regions in this study, illustrating the estimated accuracy of 

mean groundwater storage anomalies based on the sets of wells used here.  We estimate that the 

absolute error is the largest (around 5 cm) in the sub-basins of the Mississippi river and smallest 

(less than 2 cm) in Massachusetts where more wells are available.   

Ideally, the parameters estimated for the log-log linear relationship between spatial 

variability of groundwater storage anomalies and extent would be tested using independent data.  

Because other data were not available, we constructed an alternative set of regions by splitting, 

longitudinally, each of the four northeastern regions into two equal sub-regions and merging 

adjacent Mississippi sub-basins, Upper Mississippi and Ohio-Tennessee, Red-LM and Ohio-

Tennessee, Upper Mississippi and Missouri, and Red-LM and Missouri, into four larger basins.  

In each of these 12 new regions, spatial variability of groundwater storage anomalies was 

calculated using well data (as the truth) and using equation (2) with parameters from Table 3.  

Fig. 9 shows that, in general, the derived log-log linear relationship yielded reasonable spatial 

variability estimates based on extent, especially when spatial variability was normalized as 

before (right panel).  Note that each of the four northeastern regions was split into two equally 

sized halves, thus the predicted spatial variability was identical for each pair.               

  

4. Summary and Discussion 



  

We used groundwater well observations from the USGS archive to assess spatial and 

temporal variability of groundwater storage anomalies in nine regions, how they vary with 

spatial scale, and their relationship with other hydro-meteorological variables.  Key conclusions 

were (1) the spatial variability of groundwater storage anomalies increases linearly with spatial 

scale when plotted on a log-log graph; (2) spatial variability of groundwater storage anomalies 

increases under relatively dry and wet conditions in most regions, in contrast to the upward 

convexity of analogous plots of soil moisture variability vs. mean; and (3) the variability of land 

surface model simulated recharge is consistent with observed groundwater dynamics.  While 

only the second of these conclusions might be considered unexpected, the significance of this 

study is that it is the first to evaluate these matters at large scales with real data.  Of particular 

importance, the log-log linear relationship (conclusion 1) has been identified in other 

hydrological variables but it had never been demonstrated with groundwater data.  Further, based 

on the power function and parameters stemming from our analysis, we derived relationships that 

can be used to estimate the number of wells required to compute spatial mean groundwater 

storage anomalies at a specified level of accuracy for a given region size, and for assessing the 

accuracy of area mean estimates given a certain number of wells, under the assumption of 

normally distributed data.      

Overall, our results are consistent with the expectation that relationships between 

groundwater storage variability and other processes (precipitation recharge, and discharge) are 

influenced by climatic and hydrogeological conditions.  Groundwater storage anomalies derived 

from in situ measurements exhibit seasonal and inter-annual variability that is positively 

correlated with hydro-climatic variability but also influenced by other factors.  In particular, due 



  

to the filtering effects of the overlying geology, monthly regional-mean groundwater storage 

anomalies often lag monthly precipitation, more so in regions with drier climate or deeper wells.            

Observed changes in groundwater storage and recharge simulated by the NLDAS/VIC 

land surface model were well correlated (Table 2).  That bodes well for the use of VIC simulated 

recharge as a substitute for observation-based recharge estimates, which are typically only 

available from field scale studies or depend on water budget approaches that carry with them a 

significant degree of uncertainty (Scanlon et al., 2002).  Conversely, it bolsters our underlying 

assumption that data from scattered groundwater wells are sufficient for regional groundwater 

storage analysis.  However, we caution that the suitability of VIC recharge appears to be region-

specific and that recharge estimates from other land surface models should be independently 

verified.  Xia et al. (2012a) showed that recharge simulated by the four NLDAS-2 models 

exhibited the largest disparities and lowest inter-correlation compared with other modeled states 

and fluxes, especially in the drier U.S. interior, indicating that it is highly sensitive to model 

physics and parameters.        

The large inter-annual variability of groundwater storage anomalies and its relationship 

with or impacts on other variables underscore the importance of accounting for groundwater 

storage changes in water budget analyses and of properly representing groundwater storage and 

its interannual variability in hydrological models.  As shown in this study, temporal variability of 

groundwater storage is largely controlled by precipitation and evapo-transpiration, but its 

behavior also depends on other meteorological factors and soil and aquifer properties. Simulating 

groundwater storage in a model is complicated by the three dimensional heterogeneity of the 

subsurface and a lack of detailed hydrogeological information in most of the world.  Further, 

modeled groundwater is sensitive to model parameters affecting groundwater depths (Li and 



  

Rodell, 2014) and may be more vulnerable to uncertainties associated with model physics and 

static parameters than other near surface states such as soil moisture, due to groundwater’s low 

replenishment rate (Li et al., 2012).   Thus, understanding and properly representing large scale 

aspects of groundwater storage variability, such as those described here, may be a useful path to 

enhancing groundwater simulation in large scale numerical models.  Such improved 

understanding also will aid in interpreting the low spatial resolution terrestrial water storage data 

provided by GRACE.  Further, constraining a land surface model, whose parameterization has 

been informed by conclusions of studies based on in situ measurement such as this, with 

observations from GRACE via data assimilation, may be the best hope for global accounting of 

groundwater storage changes (Zaitchik et al., 2008).        

               Our study showed that spatial variability of groundwater storage anomalies exhibits 

dependence on spatial mean, with higher spatial variability at low and high mean storage 

anomalies in most regions. This relationship contrasts with that between soil moisture spatial 

variability and spatial mean.  A possible implication of this difference is that the contribution of 

groundwater to local evapotranspiration and runoff may be enhanced relative to that of soil 

moisture under very wet and dry conditions.  Similarly, groundwater levels may be a more 

important consideration for flood prediction than soil moisture.  This is further justification for 

incorporating groundwater into various types of Earth system and water management models.  

The dependence of spatial variability on mean seems to be more distinct in humid regions with 

more uniformly shallow water tables. Deeper water tables and/or low rates of recharge tend to 

produce a wider range of temporal variability among wells that may obscure the relationship 

between spatial variability of groundwater storage anomalies and spatial mean.         



  

 The linear relationship between log-spatial-variability of groundwater storage anomalies 

and log-spatial-extent provides the theoretical basis for scaling groundwater measurements and a 

mathematical form to obtain spatial variability of groundwater storage anomalies at any given 

scale.  We applied that relationship to derive an equation for estimating the number of wells 

required to determine area-mean groundwater storage anomalies with a given level of accuracy, 

and, to estimate accuracy based on the region size and number of wells available.  We expect 

these equations will be valuable for assessing uncertainty in groundwater resource studies and 

for designing groundwater monitoring networks.  The current scarcity of publicly available 

groundwater data in much of the world compels scientists and water resources managers to 

extrapolate data from a few in situ observations to their scale of interest.   Knowledge of the 

spatial behavior of groundwater storage variability will benefit these endeavors.  However, 

because the scale dependency likely changes with support, studies on the scale dependency of 

anomalies of GRACE derived TWS and model estimated groundwater would help to optimize 

downscaling and disaggregation (into groundwater and other components) of GRACE TWS via 

data assimilation (Zaitchik et al., 2008).   

The scale dependency of groundwater storage anomalies reflects the combined influences 

of various controls on groundwater at different spatial scales, including meteorological inputs, 

topography, geology, and vegetation.  It is this combination of influences, and not necessarily the 

extent itself, that induces the observed log-log linear relationship between spatial variability of 

groundwater storage anomalies and extent.  Note that, since wells that are directly influenced by 

human activities were excluded from this study, the reported log-log linear relationship may not 

be appropriate for estimating spatial variability of groundwater storage anomalies in regions 

where groundwater withdrawals exert substantial control over regional mean water levels.          



  

 Uncertainty in our results and conclusions mainly arises from reliance on data from a 

finite number of wells to characterize spatial variability in our nine study regions, which was 

beyond our control.  There are many ways in which the study could have been improved given a 

greater density of high quality groundwater observation time series, such as investigating smaller 

scale variability and understanding areas of influence of individual wells, but we did our best 

with what was available.  Further, the degree to which these sets of wells represent heterogeneity 

of groundwater storage variations, which results from both geology and meteorology, is 

unknown.  If the wells were preferentially installed in certain types of aquifer, our results could 

be biased.  The normalization method used in developing Fig. 6 was one attempt to remove the 

influence of climate and geology on what we inferred about scaling of groundwater variability.  

We imposed strict criteria for well selection from among those archived by the USGS, 

specifically to eliminate wells that could be directly impacted by pumping or injections, wells 

installed in confined aquifers, and wells that were not monitored frequently enough to capture 

the seasonal cycle.  Nevertheless, conformity with these criteria was judged based on incomplete 

metadata and our own assessments of the time series, and it is very possible that flawed 

candidate wells slipped through.  We relied on the same incomplete metadata and literature 

review to estimate specific yield values, and the results are surely imperfect.  Finally, we did not 

attempt to account for atmospheric pressure effects on measured groundwater levels.  We believe 

that accounting for these effects would be inconsequential to our major conclusions, which were 

based on either multi-annual temporal means (over which periods atmospheric pressure effects 

average out) or a preponderance of data. 

 



  

Figure Captions 

Fig. 1. Locations of groundwater wells in Long Island (“LI”), New Jersey (“NJ”), Massachusetts 

(“MA”), Pennsylvania (“PA”) and the four sub-basins of the Mississippi river: the Upper 

Mississippi (“Up-Mis”), the Ohio-Tennessee (“Oh-Tn”), the combined Red River and Lower 

Mississippi (“Red-LM”) and the Missouri basin.  The area of each region given in Table 1 

corresponds to the parts of the map that are shaded or encompassed by rectangles.  

Fig. 2. Time series of monthly groundwater storage anomalies at individual wells (grey lines), 

the regional mean (black lines), and spatial variability (standard deviation, marked lines) for each 

of the nine study regions.  Monthly NLDAS precipitation (top black bars) is also plotted. 

Fig. 3. Monthly seasonal cycles of regional mean groundwater storage anomalies, recharge 

anomalies, discharge anomalies, and changes in groundwater storage, and precipitation (grey 

bars), for each of the nine study regions.  Anomalies, computed by removing the long term 

means, are plotted in order to facilitate comparison among variables.   

Fig. 4. Time series of deseasonalized groundwater storage anomalies, deseasonalized 

precipitation and deseasonalized recharge anomalies in the nine regions.  Precipitation and 

recharge are plotted as the running average of the prior 6-months in order to accentuate 

significant wet and dry periods.   

  

Fig. 5. Spatial variability (standard deviation) of groundwater storage anomalies as a function of 

mean anomaly in each region.      



  

Fig. 6. Spatial variability (standard deviation) of groundwater storage anomalies (a), groundwater 

recharge (b), and specific yield (c) as a function of spatial extent.  Log scales were used in both x 

and y axes.  Spatial standard deviations of groundwater storage anomalies and recharge were 

averaged over all months.  Spatial extent was calculated as the square root of the area in each 

region.  Normalized standard deviation in a region was computed by dividing the spatial standard 

deviation by the average (over all wells) of the long term temporal standard deviation.  

Fig. 7.  Coefficients of temporal correlation between groundwater storage anomalies of any two 

wells (located in the same region) as a function of their separation distance.     

Fig. 8. Number of wells required to represent the spatial mean at five different absolute error 

levels (“d”) as a function of spatial extent.  The x and y values of each circle (with region id 

enclosed) correspond to the extent and number of wells at each of the nine regions, respectively.       

Fig.9. Predicted spatial variability (StD) of groundwater storage anomalies (left panel) based on 

equation (2) versus estimated spatial variability using in situ groundwater data in equally split 

regions of Long Island, New Jersey, Massachusetts, Pennsylvania and combined regions of 

Upper Mississippi and Ohio-Tennessee, Red-LM and Ohio-Tennessee, Upper Mississippi and 

Missouri, and Red-LM and Missouri.  The right panel shows the similar results for normalized 

spatial variability.    
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Figure 1. Locations of groundwater wells in Long Island (“LI”), New Jersey (“NJ”), Massachusetts (“MA”), Pennsylvania (“PA”) and the four sub-basins of the
Mississippi river: the Upper Mississippi (“Up-Mis”), the Ohio-Tennessee (“Oh-Tn”), the combined Red River and Lower Mississippi (“Red-LM”) and the Missouri
basin. The area of each region given in Table 1 corresponds to the parts of the map that are shaded or encompassed by rectangles.



  

Figure 2. Time series of monthly groundwater storage anomalies at individual wells (grey lines), the regional mean (black lines), and spatial variability
(standard deviation, marked lines) for each of the nine study regions. Monthly NLDAS precipitation (top black bars) is also plotted.



  

Figure 3. Monthly seasonal cycles of regional mean groundwater storage anomalies, recharge anomalies, changes in groundwater storage, and precipitation
(grey bars), for each of the nine study regions. Anomalies, computed by removing the long term means, are plotted in order to facilitate comparison among
variables.



  

Figure 4. Time series of deseasonalized groundwater storage, deseasonalized precipitation and deseasonalized recharge anomalies in the nine regions.
Precipitation and recharge are plotted as the running average of the prior 6-months in order to accentuate significant wet and dry periods.



  

Figure 5. Spatial variability (standard deviation) of groundwater storage anomalies as a function of mean anomaly in each region.



  

Figure 6. Spatial variability (standard deviation) of groundwater storage anomalies (a), groundwater recharge (b), and specific yield (c) as a function of spatial
extent. Log scales were used in both x and y axes. Spatial standard deviations of groundwater storage and recharge were averaged over all months. Spatial
extent was calculated as the square root of the area in each region. Normalized standard deviation in a region was computed by dividing the spatial standard
deviation by the average (over all wells) of the long term temporal standard deviation.



  

Figure 7. Coefficients of temporal correlation between groundwater storage anomalies of any two wells (located in the same region) as a function of their
separation distance.



  

Figure 8. Number of wells required to represent the spatial mean at five different absolute error levels (“d”) as a function of spatial extent. The x and y
values of each circle (with region id enclosed) correspond to the extent and number of wells at each of the nine regions, respectively.



  

Fig.9. Predicted spatial variability (StD) of groundwater storage anomalies (left panel) based on equation (2) versus estimated spatial variability using in situ groundwater data in equally split regions of Long
Island, New Jersey, Massachusetts, Pennsylvania and combined regions of Upper Mississippi and Ohio-Tennessee, Red-LM and Ohio-Tennessee, Upper Mississippi and Missouri, and Red-LM and Missouri.
The right panel shows the similar results for normalized spatial variability.



  

Table 1. Region name, data period, number of wells, area, average specific yield ( yS ), average 

well depth ( d well), average depth to water ( d gw), average annual NLDAS precipitation ( P ) and 

average annual groundwater recharge ( R ) in each region.   

  
id region data period 

# of 
wells 

area 
(km2) yS  

welld
(m) 

gwd  
(m) 

P  
(cm) 

R  
(cm) 

1 Long Island 1992-2011 16 2000 0.26 15 8 119 71
2 New Jersey 2002-2011 27 14200 0.17 27 6 124 62
3 Massachusetts 1980-2011 48 28400 0.20 9 4 122 68
4 Pennsylvania 2002-2011 35 102900 0.07 42 10 117 57
5 Upper 

Mississippi 
1980-2010 13 491800 0.17 19 6 90 25

6 Ohio-Tennessee 1980-2010 10 528100 0.09 38 7 119 49
7 Red-LM 1980-2010 13 903900 0.16 86 17 97 30
8 Missouri 1980-2010 19 1324000 0.14 30 9 60 8
9 Mississippi 1980-2010 55 3247800 0.14 42 10 87 25

 

Table 2. Coefficients of correlation between regional mean groundwater storage anomalies and regional 
mean precipitation (2nd row) and regional mean recharge (3rd row), and correlation between regional mean 
changes in groundwater storage ( GW) and recharge (4th row).   

region Long 
Island 

NJ MA PA Upper 
Mississippi 

Ohio-
Tennessee 

Red-
LM 

MO MS

gw vs 
precip 

0.06 0.05 0.31 0.17 0.24 0.28 0.07 0.37 0.25

gw vs  
recharge 

0.22 0.53 0.73 0.80 0.55 0.75 0.38 0.43 0.43

 GW vs 
recharge 

0.77 0.85 0.75 0.64 0.53 0.54 0.67 0.65 0.72

 

 

Table 3. Parameters obtained by fitting equation (2) to spatial variability (StD) of groundwater 
storage anomalies, recharge, and specific yields as a function of extents.  Slopes in bold are 
significant at the 5% level.  

 groundwater storage recharge specific yield 
 StD normalized StD StD normalized Std StD 
slope 0.13 0.17 0.28 0.48 0.067 

y-intercept 1.13 -1.14 -1.34 -3.52 -3.39 



  

 spatial variability of groundwater storage anomalies increases as a power function 

of extent 

 spatial variability of groundwater storage anomalies depends on mean 

groundwater storage 

 Seasonality of groundwater storage is similar to that of modeled recharge  

 


