391 research outputs found

    The Bose Metal: gauge field fluctuations and scaling for field tuned quantum phase transitions

    Full text link
    In this paper, we extend our previous discussion of the Bose metal to the field tuned case. We point out that the recent observation of the metallic state as an intermediate phase between the superconductor and the insulator in the field tuned experiments on MoGe films is in perfect consistency with the Bose metal scenario. We establish a connection between general dissipation models and gauge field fluctuations and apply this to a discussion of scaling across the quantum phase boundaries of the Bose metallic state. Interestingly, we find that the Bose metal scenario implies a possible {\em two} parameter scaling for resistivity across the Bose metal-insulator transition, which is remarkably consistent with the MoGe data. Scaling at the superconductor-metal transition is also proposed, and a phenomenolgical model for the metallic state is discussed. The effective action of the Bose metal state is described and its low energy excitation spectrum is found to be ω∝k3\omega \propto k^{3}.Comment: 15 pages, 1 figur

    Functional Brain Imaging with Multi-Objective Multi-Modal Evolutionary Optimization

    Get PDF
    Functional brain imaging is a source of spatio-temporal data mining problems. A new framework hybridizing multi-objective and multi-modal optimization is proposed to formalize these data mining problems, and addressed through Evolutionary Computation (EC). The merits of EC for spatio-temporal data mining are demonstrated as the approach facilitates the modelling of the experts' requirements, and flexibly accommodates their changing goals

    Screening effects in superconductors

    Get PDF
    The partition function of the Hubbard model with local attraction and long range Coulomb repulsion between electrons is written as a functional integral with an action AA involving a pairing field Δ\Delta and a local potential VV. After integration over VV and over fluctuations in ∣Δ∣2|\Delta|^{2}, the final form of AA involves a Josephson coupling between the local phases of Δ\Delta and a "kinetic energy" term, representing the screened Coulomb interaction between charge fluctuations. The competition between Josephson coupling and charging energy allows to understand the relation between TCT_{C} and composition in high-TCT_{C} materials, in particular superlattices, alloys and bulk systems of low doping.Comment: 4 pages, revtex, no figures, submitted to Physica B (Proceedings of SCES '96 International Conference, held in Zurich from 19th to 21st of August

    One-dimensional Josephson arrays as superlattices for single Cooper pairs

    Full text link
    We investigate uniform one-dimensional arrays of small Josephson junctions (EJâ‰ȘECE_J \ll E_C, EC=(2e)2/2CE_C = (2e)^2/2C) with a realistic Coulomb interaction U(x)=ECλexp⁥(−∣x∣/λ)U(x) = E_C \lambda \exp( - |x|/\lambda) (here λ≫1\lambda \gg 1 is the screening length in units of the lattice constant of the array). At low energies this system can be described in terms of interacting Bose particles (extra single Cooper pairs) on the lattice. With increasing concentration Îœ\nu of extra Cooper pairs, a crossover from the Bose gas phase to the Wigner crystal phase and then to the superlattice regime occurs. The phase diagram in the superlattice regime consists of commensurable insulating phases with Îœ=1/l\nu = 1/l (ll is integer) separated by superconducting regions where the current is carried by excitations with {\em fractional} electric charge q=±2e/lq = \pm 2e/l. The Josephson current through a ring-shaped array pierced by magnetic flux is calculated for all of the phases.Comment: 4 pages (LATEX), 2 figure

    Anisotropy in the helicity modulus of a quantum 3D XY-model: application to YBCO

    Full text link
    We present a variational study of the helicity moduli of an anisotropic quantum three-dimensional (3D) XY-model of YBCO in superconducting state. It is found that both the ab-plane and the c-axis helicity moduli, which are proportional to the inverse square of the corresponding magnetic field penetration depth, vary with temperature T as T to the fourth power in the zero temperature limit. Moreover, the c-axis helicity modulus drops with temperature much faster than the ab-plane helicity modulus because of the weaker Josephson couplings along the c-axis compared to those along the ab-plane. These findings are in disagreement with the experiments on high quality samples of YBCO.Comment: 9 pages, 1 figur

    Quantum-Phase Transitions of Interacting Bosons and the Supersolid Phase

    Full text link
    We investigate the properties of strongly interacting bosons in two dimensions at zero temperature using mean-field theory, a variational Ansatz for the ground state wave function, and Monte Carlo methods. With on-site and short-range interactions a rich phase diagram is obtained. Apart from the homogeneous superfluid and Mott-insulating phases, inhomogeneous charge-density wave phases appear, that are stabilized by the finite-range interaction. Furthermore, our analysis demonstrates the existence of a supersolid phase, in which both long-range order (related to the charge-density wave) and off-diagonal long-range order coexist. We also obtain the critical exponents for the various phase transitions.Comment: RevTex, 20 pages, 10 PostScript figures include

    Monte Carlo study of the superfluid weight in doped antiferromagnets

    Full text link
    The phase fluctuations of the condensate in doped antiferromagnets, described by a t-t'-J model and a suitable 1/N expansion, provide a mechanism for a Kosterlitz-Thouless (KT) type of transition to a superconducting state below T_{c}. In this paper, we present a Monte Carlo study of the corresponding superfluid weight D_{s}(T) in the classical (large-N) limit, as a function of temperature and doping. Consistent with generic experimental trends, D_{s}(T) exhibits a T-linear decrease at low temperatures, with the magnitude of the slope D_{s}'(0) increasing upon doping. Finite-size scaling in the underdoped regime predicts values for the dimensionless ratio A=k_{B}T_{c}/D_{s}(0) of order unity, with A=0.4435(5) in the half-filled-band limit, thus confirming D_{s}(0) as the fundamental energy scale determining T_{c}. Our Monte Carlo results for D_{s}(T)/D_{s}(0) vs k_{B}T/D_{s}(0), at 10% hole doping, are found to be in reasonable agreement with recent measurements on La_{2-x}Sr_{x}CuO_{4}, with x=0.10, throughout the temperature range below the theoretical KT transition temperature T_{c}.Comment: 9 pages, REVTEX file (4 Postscript figures). To appear in Phys. Rev.

    Nature of the quantum phase transitions in the two-dimensional hardcore boson model

    Full text link
    We use two Quantum Monte Carlo algorithms to map out the phase diagram of the two-dimensional hardcore boson Hubbard model with near (V1V_1) and next near (V2V_2) neighbor repulsion. At half filling we find three phases: Superfluid (SF), checkerboard solid and striped solid depending on the relative values of V1V_1, V2V_2 and the kinetic energy. Doping away from half filling, the checkerboard solid undergoes phase separation: The superfluid and solid phases co-exist but not as a single thermodynamic phase. As a function of doping, the transition from the checkerboard solid is therefore first order. In contrast, doping the striped solid away from half filling instead produces a striped supersolid phase: Co-existence of density order with superfluidity as a single phase. One surprising result is that the entire line of transitions between the SF and checkerboard solid phases at half filling appears to exhibit dynamical O(3) symmetry restoration. The transitions appear to be in the same universality class as the special Heisenberg point even though this symmetry is explicitly broken by the V2V_2 interaction.Comment: 10 pages, 14 eps figures, include

    Low energy collective modes, Ginzburg-Landau theory, and pseudogap behavior in superconductors with long-range pairing interactions

    Full text link
    We study the superconducting instability in systems with long but finite ranged, attractive, pairing interactions. We show that such long-ranged superconductors exhibit a new class of fluctuations in which the internal structure of the Cooper pair wave function is soft, and thus lead to "pseudogap" behavior in which the actual transition temperature is greatly depressed from its mean field value. These fluctuations are {\it not} phase fluctuations of the standard superconducting order parameter, and lead to a highly unusual Ginzburg-Landau description. We suggest that the crossover between the BCS limit of a short-ranged attraction and our problem is of interest in the context of superconductivity in the underdoped cuprates.Comment: 20 pages with one embedded ps figure. Minor revisions to the text and references. Final version to appear in PRB on Nov. 1st, 200

    On Effect of Equilibrium Fluctuations on Superfluid Density in Layered Superconductors

    Full text link
    We calculate suppression of inter- and intralayer superconducting currents due to equilibrium phase fluctuations and find that, in contrast to a recent prediction, the effect of thermal fluctuations cannot account for linear temperature dependence of the superfluid density in high-Tc superconductors at low temperatures. Quantum fluctuations are found to dominate over thermal fluctuations at low temperatures due to hardening of their spectrum caused by the Josephson plasma resonance. Near Tc sizeable thermal fluctuations are found to suppress the critical current in the stack direction stronger, than in the direction along the layers. Fluctuations of quasiparticle branch imbalance make the spectral density of voltage fluctuations at small frequencies non zero, in contrast to what may be expected from a naive interpretation of Nyquist formula.Comment: 5 pages, LaTeX, RevTeX, Submitted to PR
    • 

    corecore