80 research outputs found

    Consensus Recommendations for the Use of Automated Insulin Delivery (AID) Technologies in Clinical Practice

    Get PDF
    International audienceThe significant and growing global prevalence of diabetes continues to challenge people with diabetes (PwD), healthcare providers and payers. While maintaining near-normal glucose levels has been shown to prevent or delay the progression of the long-term complications of diabetes, a significant proportion of PwD are not attaining their glycemic goals. During the past six years, we have seen tremendous advances in automated insulin delivery (AID) technologies. Numerous randomized controlled trials and real-world studies have shown that the use of AID systems is safe and effective in helping PwD achieve their long-term glycemic goals while reducing hypoglycemia risk. Thus, AID systems have recently become an integral part of diabetes management. However, recommendations for using AID systems in clinical settings have been lacking. Such guided recommendations are critical for AID success and acceptance. All clinicians working with PwD need to become familiar with the available systems in order to eliminate disparities in diabetes quality of care. This report provides much-needed guidance for clinicians who are interested in utilizing AIDs and presents a comprehensive listing of the evidence payers should consider when determining eligibility criteria for AID insurance coverage

    A Glycemia Risk Index (GRI) of Hypoglycemia and Hyperglycemia for Continuous Glucose Monitoring Validated by Clinician Ratings

    Get PDF
    BackgroundA composite metric for the quality of glycemia from continuous glucose monitor (CGM) tracings could be useful for assisting with basic clinical interpretation of CGM data.MethodsWe assembled a data set of 14-day CGM tracings from 225 insulin-treated adults with diabetes. Using a balanced incomplete block design, 330 clinicians who were highly experienced with CGM analysis and interpretation ranked the CGM tracings from best to worst quality of glycemia. We used principal component analysis and multiple regressions to develop a model to predict the clinician ranking based on seven standard metrics in an Ambulatory Glucose Profile: very low-glucose and low-glucose hypoglycemia; very high-glucose and high-glucose hyperglycemia; time in range; mean glucose; and coefficient of variation.ResultsThe analysis showed that clinician rankings depend on two components, one related to hypoglycemia that gives more weight to very low-glucose than to low-glucose and the other related to hyperglycemia that likewise gives greater weight to very high-glucose than to high-glucose. These two components should be calculated and displayed separately, but they can also be combined into a single Glycemia Risk Index (GRI) that corresponds closely to the clinician rankings of the overall quality of glycemia (r = 0.95). The GRI can be displayed graphically on a GRI Grid with the hypoglycemia component on the horizontal axis and the hyperglycemia component on the vertical axis. Diagonal lines divide the graph into five zones (quintiles) corresponding to the best (0th to 20th percentile) to worst (81st to 100th percentile) overall quality of glycemia. The GRI Grid enables users to track sequential changes within an individual over time and compare groups of individuals.ConclusionThe GRI is a single-number summary of the quality of glycemia. Its hypoglycemia and hyperglycemia components provide actionable scores and a graphical display (the GRI Grid) that can be used by clinicians and researchers to determine the glycemic effects of prescribed and investigational treatments

    Diabetes-Specific Nutrition Algorithm: A Transcultural Program to Optimize Diabetes and Prediabetes Care

    Get PDF
    Type 2 diabetes (T2D) and prediabetes have a major global impact through high disease prevalence, significant downstream pathophysiologic effects, and enormous financial liabilities. To mitigate this disease burden, interventions of proven effectiveness must be used. Evidence shows that nutrition therapy improves glycemic control and reduces the risks of diabetes and its complications. Accordingly, diabetes-specific nutrition therapy should be incorporated into comprehensive patient management programs. Evidence-based recommendations for healthy lifestyles that include healthy eating can be found in clinical practice guidelines (CPGs) from professional medical organizations. To enable broad implementation of these guidelines, recommendations must be reconstructed to account for cultural differences in lifestyle, food availability, and genetic factors. To begin, published CPGs and relevant medical literature were reviewed and evidence ratings applied according to established protocols for guidelines. From this information, an algorithm for the nutritional management of people with T2D and prediabetes was created. Subsequently, algorithm nodes were populated with transcultural attributes to guide decisions. The resultant transcultural diabetes-specific nutrition algorithm (tDNA) was simplified and optimized for global implementation and validation according to current standards for CPG development and cultural adaptation. Thus, the tDNA is a tool to facilitate the delivery of nutrition therapy to patients with T2D and prediabetes in a variety of cultures and geographic locations. It is anticipated that this novel approach can reduce the burden of diabetes, improve quality of life, and save lives. The specific Southeast Asian and Asian Indian tDNA versions can be found in companion articles in this issue of Current Diabetes Reports
    • …
    corecore