657 research outputs found

    Cytokinesis is blocked in mammalian cells transfected with Chlamydia trachomatis gene CT223

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The chlamydiae alter many aspects of host cell biology, including the division process, but the molecular biology of these alterations remains poorly characterized. Chlamydial inclusion membrane proteins (Incs) are likely candidates for direct interactions with host cell cytosolic proteins, as they are secreted to the inclusion membrane and exposed to the cytosol. The <it>inc </it>gene <it>CT223 </it>is one of a sequential set of orfs that encode or are predicted to encode Inc proteins. CT223p is localized to the inclusion membrane in all tested <it>C. trachomatis </it>serovars.</p> <p>Results</p> <p>A plasmid transfection approach was used to examine the function of the product of <it>CT223 </it>and other Inc proteins within uninfected mammalian cells. Fluorescence microscopy was used to demonstrate that <it>CT223</it>, and, to a lesser extent, adjacent <it>inc </it>genes, are capable of blocking host cell cytokinesis and facilitating centromere supranumeracy defects seen by others in chlamydiae-infected cells. Both phenotypes were associated with transfection of plasmids encoding the carboxy-terminal tail of CT223p, a region of the protein that is likely exposed to the cytosol in infected cells.</p> <p>Conclusion</p> <p>These studies suggest that certain Inc proteins block cytokinesis in <it>C. trachomatis</it>-infected cells. These results are consistent with the work of others showing chlamydial inhibition of host cell cytokinesis.</p

    Ariel - Volume 4 Number 6

    Get PDF
    Editors David A. Jacoby Eugenia Miller Tom Williams Associate Editors Paul Bialas Terry Burt Michael Leo Gail Tenikat Editor Emeritus and Business Manager Richard J. Bonnano Movie Editor Robert Breckenridge Staff Richard Blutstein Mary F. Buechler J.D. Kanofsky Rocket Weber David Maye

    The utility of flow cytometry for potable reuse

    Get PDF
    Protecting public health from pathogens is critical when treating wastewater to drinking water standards (i.e., planned water reuse). Viruses are a principal concern, yet real-time monitoring strategies do not currently measure virus removal through reuse processes. Flow cytometry (FCM) has enabled rapid and sensitive bacteria monitoring in water treatment applications, but methods for virus and protozoa monitoring remain immature. We discuss recent advances in the FCM field and FCM applications for quantifying microorganisms in water. We focus on flow virometry (FVM) developments, as virus enumeration methods show promise for water reuse applications. Ultimately, we propose FVM for near real-time monitoring across treatment to more accurately validate virus particle removal and for pilot studies to characterize removal through understudied unit processes

    The trans-Golgi SNARE syntaxin 6 is recruited to the chlamydial inclusion membrane

    Get PDF
    Chlamydia trachomatis is an obligate intracellular pathogen that replicates within a parasitophorous vacuole termed an inclusion. The chlamydial inclusion is isolated from the endocytic pathway but fusogenic with Golgi-derived exocytic vesicles containing sphingomyelin and cholesterol. Sphingolipids are incorporated into the chlamydial cell wall and are considered essential for chlamydial development and viability. The mechanisms by which chlamydiae obtain eukaryotic lipids are poorly understood but require chlamydial protein synthesis and presumably modification of the inclusion membrane to initiate this interaction. A polarized cell model of chlamydial infection has demonstrated that chlamydiae preferentially intercept basolaterally directed, sphingomyelin-containing exocytic vesicles. Here we examine the localization and potential function of trans-Golgi and/or basolaterally associated soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins in chlamydia-infected cells. The trans-Golgi SNARE protein syntaxin 6 is recruited to the chlamydial inclusion in a manner that requires chlamydial protein synthesis and is conserved among all chlamydial species examined. The localization of syntaxin 6 to the chlamydial inclusion requires a tyrosine motif or plasma membrane retrieval signal (YGRL). Thus in addition to expression of at least two inclusion membrane proteins that contain SNARE-like motifs, chlamydiae also actively recruit eukaryotic SNARE-family proteins

    Serum proteomic analysis focused on fibrosis in patients with hepatitis C virus infection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite its widespread use to assess fibrosis, liver biopsy has several important drawbacks, including that is it semi-quantitative, invasive, and limited by sampling and observer variability. Non-invasive serum biomarkers may more accurately reflect the fibrogenetic process. To identify potential biomarkers of fibrosis, we compared serum protein expression profiles in patients with chronic hepatitis C (CHC) virus infection and fibrosis.</p> <p>Methods</p> <p>Twenty-one patients with no or mild fibrosis (METAVIR stage F0, F1) and 23 with advanced fibrosis (F3, F4) were retrospectively identified from a pedigreed database of 1600 CHC patients. All samples were carefully phenotyped and matched for age, gender, race, body mass index, genotype, duration of infection, alcohol use, and viral load. Expression profiling was performed in a blinded fashion using a 2D polyacrylamide gel electrophoresis/LC-MS/MS platform. Partial least squares discriminant analysis and likelihood ratio statistics were used to rank individual differences in protein expression between the 2 groups.</p> <p>Results</p> <p>Seven individual protein spots were identified as either significantly increased (Ξ±<sub>2</sub>-macroglobulin, haptoglobin, albumin) or decreased (complement C-4, serum retinol binding protein, apolipoprotein A-1, and two isoforms of apolipoprotein A-IV) with advanced fibrosis. Three individual proteins, haptoglobin, apolipoprotein A-1, and Ξ±<sub>2</sub>-macroglobulin, are included in existing non-invasive serum marker panels.</p> <p>Conclusion</p> <p>Biomarkers identified through expression profiling may facilitate the development of more accurate marker algorithms to better quantitate hepatic fibrosis and monitor disease progression.</p

    Inhibition of Endothelin-1-Mediated Contraction of Hepatic Stellate Cells by FXR Ligand

    Get PDF
    Activation of hepatic stellate cells (HSCs) plays an important role in the development of cirrhosis through the increased production of collagen and the enhanced contractile response to vasoactive mediators such as endothelin-1 (ET-1). The farnesoid X receptor (FXR) is a member of the nuclear receptor superfamily that is highly expressed in liver, kidneys, adrenals, and intestine. FXR is also expressed in HSCs and activation of FXR in HSCs is associated with significant decreases in collagen production. However, little is known about the roles of FXR in the regulation of contraction of HSCs. We report in this study that treatment of quiescent HSCs with GW4064, a synthetic FXR agonist, significantly inhibited the HSC transdifferentiation, which was associated with an inhibition of the upregulation of ET-1 expression. These GW4064-treated cells also showed reduced contractile response to ET-1 in comparison to HSCs without GW4064 treatment. We have further shown that GW4064 treatment inhibited the ET-1-mediated contraction in fully activated HSCs. To elucidate the potential mechanism we showed that GW4064 inhibited ET-1-mediated activation of Rho/ROCK pathway in activated HSCs. Our studies unveiled a new mechanism that might contribute to the anti-cirrhotic effects of FXR ligands
    • …
    corecore