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Protecting public health from pathogens is critical when

treating wastewater to drinking water standards (i.e., planned

water reuse). Viruses are a principal concern, yet real-time

monitoring strategies do not currently measure virus removal

through reuse processes. Flow cytometry (FCM) has enabled

rapid and sensitive bacteria monitoring in water treatment

applications, but methods for virus and protozoa monitoring

remain immature. We discuss recent advances in the FCM field

and FCM applications for quantifying microorganisms in water.

We focus on flow virometry (FVM) developments, as virus

enumeration methods show promise for water reuse

applications. Ultimately, we propose FVM for near real-time

monitoring across treatment to more accurately validate virus

particle removal and for pilot studies to characterize removal

through understudied unit processes.
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Introduction
Wastewater is increasingly used as an alternative water

source to meet potable needs [1–3], giving rise to new

challenges in assuring public health. Pathogenic micro-

organisms are of principal concern in wastewater reuse

due to the acute health risks they pose to consumers.

Virus removal, in particular, is a major driver in the

regulation and design of planned potable water reuse

because they are present in high concentrations in waste-

water [1,4–6], and their small size (20 nm to over 200 nm)
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makes them difficult to remove [7]. Depending on the

intended application and project location, reuse regula-

tions and guidelines for virus removal range from 8- to 13-

logs or more from raw or treated wastewater to finished

water [4,5,8].

Ideally, pathogens would be monitored directly in fin-

ished drinking water to demonstrate the water is safe;

however, this is infeasible due to the extremely low

pathogen concentrations in safe finished water (e.g.,

10�7 enteric viruses/l [1]). Instead, individual unit pro-

cesses in the treatment train are allotted log removal

credits for groups of pathogens, and the credits are

summed across the treatment train. To maintain removal

credits, the proper functioning of a unit process is ensured

in real-time or near real-time by monitoring an easy-to-

measure surrogate parameter, such as turbidity or electri-

cal conductivity. These surrogate parameters often

underestimate actual microorganism removal. Virus

removal credits, in particular, are very conservative. Con-

sequently, potable water reuse treatment trains may be

over engineered for pathogen removal because utilities

cannot demonstrate the actual log reductions for common

unit processes (e.g., biofiltration, ultrafiltration, reverse

osmosis).

The water treatment field in general, and the wastewater

reuse field in particular, would greatly benefit from tech-

nologies that accurately depict microorganism concentra-

tions in real-time or near real-time and demonstrate their

reductions through specific unit processes. We believe

flow cytometry (FCM), a high-throughput technique that

uses light scattering and fluorescence for particle detec-

tion [9], can fill some of these needs for microbe moni-

toring and will be increasingly applied for wastewater

reuse monitoring. The main advantage of FCM over

currently used surrogate parameters is that it directly

detects microorganisms. The main advantages of FCM

for reuse applications over other microbial detection

techniques are that it is high-throughput, reproducible,

and can concurrently enumerate different microorganism

groups based on size and fluorescence properties. In this

perspective, we review recent applications and advances

in FCM for environmental monitoring. We discuss the

three main pathogen groups but focus on virus detection

using FCM, coined flow virometry (FVM), as we see this

as an area ripe for advancement in coming years. In

accordance with the demonstrated capabilities of FCM

and FVM, we propose three-specific applications in pota-

ble water reuse.
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Recent applications and advances in the
use of FCM for bacteria and protozoa
monitoring
Bacteria  enumeration via FCM is far more advanced

than protozoa or virus monitoring in terms of experi-

ence, automation, and proof-of-concept research

[10,11]. Bacteria in drinking and surface water matrices

can effectively be monitored in real-time [12,13,14��]
using flow cytometers with automated modules that

routinely sample, stain, and enumerate bacteria with

15-min resolution [15]. Online bacteria monitoring via

FCM in full-scale water treatment systems offers

improved resolution, reproducibility, and statistical

power over traditional bacteria monitoring methods

such as heterotrophic plate counts [11]. Bacteria stain-

ing techniques aimed at assessing viability are now

commonly applied to distinguish intact from mem-

brane compromised bacteria [10]. Total and viable

bacteria levels have been enumerated via FCM in

various water types (Table 1). Total bacteria reductions

of about two-logs have been reported across conven-

tional wastewater treatment [16,17], whereas a micro-

filtration unit process in a water reclamation facility can

remove over five-logs [18�].

Unlike bacteria monitoring with FCM, measuring total

protozoa populations has not been a focused area of

research. This may be due to the presence of algae or

other detrital material of similar size or fluorescent inten-

sity [19,20]. Instead, protozoa FCM research has centered

on quantifying the pathogens Cryptosporidium spp. and

Giardia spp. in water because of their health and regula-

tory relevance. Depending on the sample matrix, signifi-

cant concentration steps are required before FCM analy-

sis to detect them [21,22]. Future work to address these

limitations would help make protozoa monitoring using

FCM more realistic as a real-time reuse monitoring

strategy.
Table 1

Microorganism concentrations measured by FCM/FVM in water samp

Sample type Ba

Total

(counts/ml)

Surface water ~106 [12,50] 

Groundwater 1 � 103 to 5 � 106 [12,14��,52,53]
Raw wastewater 1.74 to 2 � 108 [16,17] 

Primary treated wastewater ~108 [16,17,18�] 

Activated sludge 2.24 to 3.3 � 109 [16,17] 

Secondary treated wastewater 2.2 � 106 to 3.87 � 108

[16,17,18�]
Disinfected wastewater effluent ~106 [16,18�] 

Microfiltration effluent �102 [18�] 

Reverse osmosis effluent �102 [18�] 

Finished drinking water ~105 [56] 
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Recent applications and advances in the use
of FVM for virus detection
Advances in FVM

Improvements in sample preparation and FVM instrumen-

tation are enabling quantification of total virus populations as

well as specific viral strains. Most flow cytometers are unable

to differentiate biological particles below approximately

300 nm from the background signal (i.e., noise) of the instru-

ment-based solely on light scattering properties [23,24]. As a

result, virus particles are commonly tagged with fluorescent

dyes via antibodies, fluorescent proteins, or nucleic acid

stains to facilitate detection. Even when stained or tagged,

however, virus particle signals are at or near the background

signals of some flow cytometers. The background signal

arises from the optical, fluidic, and electronic components

of the flow cytometer. Increased laser wattage, use of photo-

multiplier tubes (PMTs) or digital focusing systems (DFSs)

in place of photodiode detectors, filtration of sheath fluid

used during sample analysis, decreased internal chamber

size, and continual instrument cleaning are all strategies to

help reduce background signals for improved nanoparticle

detection [25��,26]. The difficulty in distinguishing a single

virus particle from multiple virus particles in one FVM event

[27] can be addressed via sample dilution [28], slower flow

rates (<1000 events per second) [29], or smaller internal

chamber size [25��]. Building on these advances, the field of

medical virology has conclusively demonstrated the utility of

FVM to detect-specific virus particles, including HIV-1

[30,31], T4 and lambda phage [32], HSV-1 [33�], Junin virus

[34��], and filoviruses [35]. These studies have used special-

ized flow cytometers with stringent controls to ensure accu-

racy in distinguishing viral populations.

Application of FVM to environmental samples

Applications of FVM in medical virology tend to concen-

trate on the detection and characterization of targeted

virus-species. Antibody-based fluorescent tagging, there-

fore, provides advantages in these applications due to its
les that are relevant for potable reuse

cteria Viruses

(counts/ml)
Viable

(counts/ml)

~106 [51] No data

 ~105 [54] No data

8.4 � 107 [17] 3.72 � 108 [16]

8.4 � 107 [17] ~108 [16,18�]
1.24 to 2.3 � 109 [16,17,55] 108 to 7.33 � 109 [16,41]

1.7 � 106 to~108 [16,17] ~108 [16,18�]

~106 [16] ~108 [16,18�]
No data 7.3 � 106 [42]

No data �104 [18�]
~105 [51] No data
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specificity. Environmental FVM studies, in contrast, have

typically focused on the enumeration of total virus par-

ticles. Here, nucleic acid staining is more applicable than

antibody tagging because it theoretically targets all

viruses in the sample. In reality, FVM fluorescence sig-

nals observed following nucleic acid staining are not

consistent among viruses with variable genome types,

genome sizes, and capsid structures.

In terms of environmental measurements, FVM has been

used most extensively in marine biology for the enumera-

tion of native marine virus populations stained with nucleic

acid dyes [28,36–38]. FVM research in the marine biology

setting hasalmostexclusively reliedon dyes fromtheSYBR

family. These are newer dyes with lower intrinsic fluores-

cence and improved nucleic acid signals compared to older

dyes (e.g., DAPI; Table 2). SYTO, TOTO, and YOYO

dyes, also newer dyes commonly employed by the medical

virology field, are avoided in marine biology because they

lose their binding affinity in samples with high ionic

strength [39,40]. These dyes have yet to be explored with

viruses in freshwater samples. Before analysis, marine virus

samples are often pretreated with fixation, heat, and flash-

freezing to improve virus particle fluorescence signals.

FVM for water quality monitoring

Water quality and water treatment researchers have drawn

from procedures used in marine biology to enumerate total
Table 2

Properties of nucleic acid stains and reference FCM studies that hav

Fluorescence dye Quantum yield 

Traditional dyes

Ethidium bromide (EB) 0.14 (DNA) [57] 

40,6-Diamidino-2-phenylindole

(DAPI)

0.34 (DNA) [58] 

Hoechst family

Hoechst 33342 0.38 (DNA) [58] 

Enhanced dyes

PicoGreen 0.53 (dsDNA), 0.42 (RNA) [61] 

SYBR family

SYBR Gold 0.7 (DNA, RNA) [62] 

SYBR Green I (SGI) 0.8 (DNA), 0.4 (RNA) [40] 

SYBR Green II (SGII) 0.36 (DNA), 0.54 (RNA) [40] 

SYTO family

SYTO 9 0.6 (DNA),

0.2 (RNA) [40]

SYTO 13 0.4 (DNA), 0.4 (RNA) [40] 

TOTO family

TOTO-1 0.34 (DNA) [58] 

YOYO family

YOYO-1 0.52 (DNA) [58] 
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virus populations in wastewaterand reclaimed water samples

[16,18�,41�,42].Overall,variouscombinationsofSYBRGold,

SYBRGreenI,andSYBRGreenIIhavebeenemployed,and

pretreatments include sample flash-freezing, heating and

incubation, and fixation [16,41�,42]. In complex samples

such as wastewater, an additional virus disaggregation step,

such as Tween 80 and sodium pyrophosphate pretreatment

can improve virus enumeration [41�]. An ultrasonication

pretreatment step did not improve enumeration in activated

sludge samples [16,41�] but did improve virus particle counts

in settled wastewater samples [16].

FVM has been used to measure virus concentrations and

removal rates for a range of treatment technologies in

wastewater and water reuse systems (Table 1). No signif-

icant reduction in virus concentrations were observed

through traditional wastewater processes via FVM

[16,18�]. Of note, total detectable virus concentrations

were reduced by over four-logs through the microfiltra-

tion process of a reclamation facility in a recent study

employing FVM [18�]. Reductions through the subse-

quent reverse osmosis unit processes were not measur-

able because the detection limit of the method had been

reached [18�]. In the same study, over four-logs of total

detectable virus particles were removed through a mem-

brane bioreactor process. At this point, infective and

non-infective viral fractions have not been differentiated

with FVM.
e used the specified stains for different analyses

Fluorescence absorption/

emission maxima (nm)

Examples of use in FCM

518/605 [58] Bacteria and enumeration [59]

358/461 [58] Bacteria enumeration [60]

350/461 [58] Bacteria enumeration [60]

500/523 [61] Virus enumeration [39]

495/537 [62] Virus enumeration [37]

Virus/bacteria enumeration [18�]
494/521 [40] Virus enumeration [28,63]

Bacteria enumeration [17,55,64�]
Virus/bacteria enumeration [16]

494/521 [40] Virus enumeration [41]

480/500 [40] Bacteria sorting [65]

Bacteria enumeration [66]

488–491/509–514 [40] Bacteria sorting [65,67]

Virus sorting [33,68]

514/533 [58] Bacteria diversity [69]

491/509 [58] Virus sorting [34]

Virus enumeration [39]
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Methodological challenges in FVM for water quality

monitoring

A number of challenges must be addressed before the

utilization of FVM for water quality monitoring can be

fully realized. One primary challenge is in confirming that

all or most virus particles are actually being measured by

FVM (i.e., avoiding false negatives). This is particularly

difficult when enumerating virus particles with small

genomes or single stranded genomes (e.g., ssRNA or

ssDNA), which tend to emit smaller fluorescence signals.

Studies often use transmission electron microscopy and/

or epifluorescence microscopy to confirm total virus par-

ticle counts obtained by FVM [16,41�,42]. Spike additions

of pure virus stocks into sample matrices are also critical

to verify that the FVM method can effectively quantify

the virus populations of interest. For example, Brown

et al. [41�] measured total virus particle counts in samples

with and without spike additions of T4 coliphage to assess

recovery in activated sludge samples. Realizing the diver-

sity of potential virus targets, we propose future studies

spike virus cocktails, consisting of several different

viruses, into samples to more accurately characterize

the impacts of genome and structure type and size on

recoveries.

Another significant challenge is minimizing false posi-

tives. These can be caused by cytometer background

noise [28], particles that autofluoresce (e.g., colloids)

[43], and biological particles that fluoresce when stained

(e.g., microvesicles, gene transfer agents, or extracellular

DNA) [44]. To address background noise of the machine,

filtered and autoclaved samples are typically run through

the cytometer and subtracted from stained samples

[41�,42]. Measuring the same sample before and after

staining can help identify particles that are not virus

particles. For biological samples, DNAse treatments have

been used with limited success to reduce the likelihood of

detecting free DNA [41�]. Chloroform treatment of sam-

ples before the addition of DNAse could also prove

beneficial by releasing membrane-associated nucleic

acids from biological particles that may otherwise results

in false positives (e.g., microvesicles, gene-transfer

agents).

Our vision of FCM in wastewater reuse
applications
Based on previous work in FCM for water monitoring,

we envision at least three major applications of flow

cytometry in the water reuse setting (Figure 1). First,

we believe FCM will become an important near-real

time surrogate measurement for validating log reduction

values through physical treatment processes (e.g., filtra-

tion, sedimentation). Specifically, reductions of groups

of particles with certain fluorescence properties could be

used to represent the removal of microorganisms with

the same FCM properties. For example, if flow cyt-

ometer measurements show a 99% reduction in
www.sciencedirect.com 
detectable virus-like particles across a unit process, then

two-log virus reduction will be granted for enteric

viruses. Before this is feasible, research will need to

establish whether reductions measured with FCM cor-

relate with actual virus removal. As an example of our

proposed approach, the four-log total virus removal

measured by Huang et al. [18�] through microfiltration

with FVM is similar to virus removal that has been

achieved through microfiltration [45], although microfil-

tration virus removal has been highly variable (i.e., 0 to

>5-log removal [46]). Where this approach can be

applied in the reuse scheme will depend on detection

methods for the particular cytometer and native virus

particle concentrations. A wide range of FVM detection

limits have been reported in various matrices, from 80 to

104 particles/ml [16,18�,31]. Beyond viruses, we imagine

similar approaches could be made for bacteria and pro-

tozoa reductions across unit processes.

We also envision using FCM to continuously monitor

particles of a certain size or fluorescence to help inform

operators of changes in treatment plant influent or efflu-

ent quality. For example, potable reuse effluent could be

continuously measured with FCM and trends in particle

size distributions, fluorescence characteristics, or particle

concentrations could be correlated with overall system

performance. Aberrations in the FCM data would thus

serve as an immediate warning for failures in the treat-

ment train. This is similar to using turbidity measure-

ments to detect changes in water quality, but FCM would

provide more relevant and extensive information related

to microbial water quality. Future research at actual

plants should study how variations in FCM ‘fingerprints’

correlate with other indices used to assess influent water

quality or overall treatment train performance.

Finally, we see FCM as a powerful tool for improved virus

removal studies at the bench-scale and pilot-scale level.

Currently, bench-scale and pilot-scale assessments of unit

processes involve spiking in one or two surrogate viruses

and measuring removal with culture-based methods.

These studies are not only time consuming, but the

selected surrogate viruses do not represent the behavior

of all viruses of interest in water [47]. An alternative

approach measures the reduction in spiked fluorescent

latex bead concentrations [46], but these particles have

little in common with virus particles. Instead, we propose

using cocktails of bacteriophages of various sizes and

genome types with stained nucleic acids that are readily

detected by FVM for bench-scale and pilot-scale assess-

ment. Alternatively, lab-synthesized virus-like particles

identical to a variety of human pathogens in structure but

containing nontoxic fluorescent tags instead of nucleic

acids can be used as a cocktail for spiking experiments

[48]. In either manner, the virus cocktails could be

utilized to directly and rapidly measure virus log removals

in pilot scale systems with FVM. An exciting application
Current Opinion in Biotechnology 2019, 57:42–49
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Figure 1
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Three potential applications of FCM in an example advanced water treatment scheme. In the first application, log removal credits are maintained

through unit processes by real-time particle monitoring. In the second application, online influent and effluent FCM monitoring detects aberrations

in water quality and system performance. In the third application, cocktails of noninfective fluorescent viruses are added to water samples before

unit processes to characterize virus removal.
of the virus-like particle spike cocktail is in assessing

pathogenic virus reductions through biological treatment

processes, which often also involve physical particle

removal. Biological treatment likely propagates bacterio-

phage and thus increases total virus concentrations in

treated water while pathogenic virus concentrations are

concurrently decreasing. Therefore, measuring back-

ground total virus concentrations before and after biolog-

ical processes by FVM would not provide an accurate

assessment of pathogenic virus removal. Adding fluores-

cent virus particles that do not replicate could alleviate

these issues and enable the accurate measurement of

physical virus removal in unit processes where virus

propagation occurs.

Conclusions and future implications
We envision that FCM will revolutionize how microbial

monitoring is conducted through potable reuse, especially

for virus detection. To bring this vision toward reality,

research should compare instrument performance with
Current Opinion in Biotechnology 2019, 57:42–49 
different virus particle sizes of variable genome types

(i.e., ssDNA, dsDNA, ssRNA, dsRNA) and assess fluo-

rescence stains already employed in other applications.

This research should be conducted in real waters with a

range of characteristics, spanning from untreated munici-

pal wastewater to finished reclaimed drinking water.

Techniques should be developed that differentiate infec-

tive and noninfective virus particles with FVM, particu-

larly as virus particles are inactivated through disinfection

unit processes. A potential method for distinguishing

infective virus particles could include the use of enzy-

matic pretreatment [49] to eliminate fluorescence from

virus particles with degraded capsids. Research is also

necessary to establish relationships between total particle

concentrations measured with FCM and pathogenic

microorganism concentrations. Finally, FVM monitoring

should be studied through bench-scale unit processes,

followed by testing at the pilot-scale, and should ulti-

mately be applied in full-scale systems with automated

monitoring.
www.sciencedirect.com
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