179 research outputs found

    In-situ thermally-reduced graphene oxide/epoxy composites: thermal and mechanical properties

    Get PDF
    Graphene has excellent mechanical, thermal, optical and electrical properties and this has made it a prime target for use as a filler material in the development of multifunctional polymeric composites. However, several challenges need to be overcome in order to take full advantage of the aforementioned properties of graphene. These include achieving good dispersion and interfacial properties between the graphene filler and the polymeric matrix. In the present work we report the thermal and mechanical properties of reduced graphene oxide/epoxy composites prepared via a facile, scalable and commercially-viable method. Electron micrographs of the composites demonstrate that the reduced graphene oxide (rGO) is well-dispersed throughout the composite. Although no improvements in glass transition temperature, tensile strength, and thermal stability in air of the composites were observed, good improvements in thermal conductivity (about 36%), tensile and storage moduli (more than 13%) were recorded with the addition of 2 wt% of rGO

    Study of the wetting of coke by different pitches

    Get PDF
    Prebaked anodes are made of dry aggregates (coke, recycled butts and rejected green/baked anodes) and the binder pitch. During the mixing process, the wettability of coke by pitch influences the anode paste behavior. Coke particles (-125 +100 m) were prepared from the same source using two different procedures, and the wettability of cokes by five pitches with different properties was studied using a sessile-drop system at 170ΒΊC. The contact angle results show that the wettability of coke by all pitches follows a similar trend for both cases, but the actual contact angles are different. The cokes and the pitch-coke interfaces were also investigated by the optical and scanning-electron microscopy (SEM) techniques. The image analysis results indicated that the coke particle size distribution depends on the coke preparation, which seems to influence its wettability

    Tuning the Double Layer of Graphene Oxide through Phosphorus Doping for Enhanced Supercapacitance

    Get PDF
    The electrochemical double layer plays a fundamental role in energy storage applications. Control of the distribution of ions in the double layer at the atomistic scale offers routes to enhanced material functionality and device performance. Here we demonstrate how the addition of an element from the third row of the periodic table, phosphorus, to graphene oxide increases the measured capacitance and present density functional theory calculations that relate the enhanced charge storage to structural changes of the electrochemical double layer. Our results point to how rational design of materials at the atomistic scale can lead to improvements in their performance for energy storage

    Very special relativity as relativity of dark matter: the Elko connection

    Get PDF
    In the very special relativity (VSR) proposal by Cohen and Glashow, it was pointed out that invariance under HOM(2) is both necessary and sufficient to explain the null result of the Michelson-Morely experiment. It is the quantum field theoretic demand of locality, or the requirement of P, T, CP, or CT invariance, that makes invariance under the Lorentz group a necessity. Originally it was conjectured that VSR operates at the Planck scale; we propose that the natural arena for VSR is at energies similar to the standard model, but in the dark sector. To this end we provide an ab initio spinor representation invariant under the SIM(2) avatar of VSR and construct a mass dimension one fermionic quantum field of spin one half. This field turns out to be a very close sibling of Elko and it exhibits the same striking property of intrinsic darkness with respect to the standard model fields. In the new construct, the tension between Elko and Lorentz symmetries is fully resolved. We thus entertain the possibility that the symmetries underlying the standard model matter and gauge fields are those of Lorentz, while the event space underlying the dark matter and the dark gauge fields supports the algebraic structure underlying VSR.Comment: 19 pages. Section 5 is new. Published version (modulo a footnote, and a corrected typo

    Leishmania Parasites Drive PD-L1 Expression in Mice and Human Neutrophils With Suppressor Capacity

    Get PDF
    Neutrophils play an important role in the outcome of leishmaniasis, contributing either to exacerbating or controlling the progression of infection, a dual effect whose underlying mechanisms are not clear. We recently reported that CD4+ and CD8+ T cells, and dendritic cells of Leishmania amazonensis-infected mice present high expression of PD-1 and PD-L1, respectively. Given that the PD-1/PD-L1 interaction may promote cellular dysfunction, and that neutrophils could interact with T cells during infection, we investigated here the levels of PD-L1 in neutrophils exposed to Leishmania parasites. We found that both, promastigotes and amastigotes of L. amazonensis induced the expression of PD-L1 in the human and murine neutrophils that internalized these parasites in vitro. PD-L1-expressing neutrophils were also observed in the ear lesions and the draining lymph nodes of L. amazonensis-infected mice, assessed through cell cytometry and intravital microscopy. Moreover, expression of PD-L1 progressively increased in neutrophils from ear lesions as the disease evolved to the chronic phase. Co-culture of infected neutrophils with in vitro activated CD8+ T cells inhibits IFN-Ξ³ production by a mechanism dependent on PD-1 and PD-L1. Importantly, we demonstrated that in vitro infection of human neutrophils by L braziliensis induced PD-L1+ expression and also PD-L1+ neutrophils were detected in the lesions of patients with cutaneous leishmaniasis. Taken together, these findings suggest that the Leishmania parasite increases the expression of PD-L1 in neutrophils with suppressor capacity, which could favor the parasite survival through impairing the immune response

    Antimicrobial photodynamic therapy compared to systemic antibiotic therapy in non-surgical treatment of periodontitis: Systematic review and meta-analysis.

    Get PDF
    BACKGROUND: Periodontitis is one of the most prevalent inflammatory diseases in humans. It is associated with the presence of bacteria and is mediated by the host's immune response This study represents a systematic review and meta-analysis trying to answer the following question: "What is the effect of antimicrobial photodynamic therapy (aPDT) as an adjunct to scaling and root planing (SRP) compared to systemic antibiotic therapy with amoxicillin plus metronidazole (AMX+MTZ) on the non-surgical treatment of periodontitis?". METHODS: Clinical studies comparing aPDT with systemic use of AMX+MTZ were searched until January of 2020 using the databases: PubMed, MEDLINE, SCOPUS, EMBASE, Cochrane Central, Web of Science and Scielo, as well manual searches in related journals. Periodontal clinical parameters such as probing depth (PD), clinical attachment level (CAL) and bleeding on probing (BOP) were statistically analyzed. RESULTS: Five randomized clinical studies (RCTs) were included within the eligibility criteria, and served as a basis for qualitative and quantitative analyzes. All the studies reported an improvement in the clinical parameters with both therapies, although in a direct comparison, our analyzes did not find statistical differences that indicate the superiority of one supporting treatment in relation to the other. CONCLUSION: Although the limited number of RCTs and the great heterogeneity between them, it can conclude that aPDT presents similar clinical results compared to antibiotic therapy with AMX+MTZ as adjuvants in the non-surgical treatment of periodontitis

    Inferring stabilizing mutations from protein phylogenies : application to influenza hemagglutinin

    Get PDF
    One selection pressure shaping sequence evolution is the requirement that a protein fold with sufficient stability to perform its biological functions. We present a conceptual framework that explains how this requirement causes the probability that a particular amino acid mutation is fixed during evolution to depend on its effect on protein stability. We mathematically formalize this framework to develop a Bayesian approach for inferring the stability effects of individual mutations from homologous protein sequences of known phylogeny. This approach is able to predict published experimentally measured mutational stability effects (ΔΔG values) with an accuracy that exceeds both a state-of-the-art physicochemical modeling program and the sequence-based consensus approach. As a further test, we use our phylogenetic inference approach to predict stabilizing mutations to influenza hemagglutinin. We introduce these mutations into a temperature-sensitive influenza virus with a defect in its hemagglutinin gene and experimentally demonstrate that some of the mutations allow the virus to grow at higher temperatures. Our work therefore describes a powerful new approach for predicting stabilizing mutations that can be successfully applied even to large, complex proteins such as hemagglutinin. This approach also makes a mathematical link between phylogenetics and experimentally measurable protein properties, potentially paving the way for more accurate analyses of molecular evolution
    • …
    corecore