218 research outputs found

    Occurrence of B chromosomes in Tetragonisca Latreille, 1811 (Hymenoptera, Apidae, Meliponini): A new contribution to the cytotaxonomy of the genus

    Get PDF
    Tetragonisca angustula and Tetragonisca fiebrigi have recently been listed as valid species. This study aimed to cytogenetically investigate both species, emphasizing the new registry of B chromosomes in the tribe Meliponini. We analyzed colonies of T. angustula and T. fiebrigi collected at Tangará da Serra, Mato Grosso, Brazil, through conventional Giemsa staining, C-banding, and base-specific fluorochrome staining (CMA3/DAPI). T. angustula showed 2n = 34 chromosomes in females and n = 17 in males, with karyotype formula 2K = 34AM. T. fiebrigi showed numeric variation, with chromosome number varying from 2n = 34 to 2n = 36 in females and from n = 17 to n = 18 in males, with karyotype formula 2K = 32AM+2AMc and 2K = 32AM+2AMc + 1 or 2 B-chromosomes. The B chromosomes are heterochromatic. In T. fiebrigi, the CMA3/DAPI staining revealed four chromosomes with a CMA3 positive band. All individuals from the same colony showed the same number of B chromosomes. T. angustula and T. fiebrigi showed karyotype divergence, principally due to the presence of B chromosomes, which are found only in T. fiebrigi. Our data corroborate the status of valid species for both T. angustula and T. fiebrigi, as recently proposed

    Influenza Virus Ribonucleoprotein Complexes Gain Preferential Access to Cellular Export Machinery through Chromatin Targeting

    Get PDF
    In contrast to most RNA viruses, influenza viruses replicate their genome in the nucleus of infected cells. As a result, newly-synthesized vRNA genomes, in the form of viral ribonucleoprotein complexes (vRNPs), must be exported to the cytoplasm for productive infection. To characterize the composition of vRNP export complexes and their interplay with the nucleus of infected cells, we affinity-purified tagged vRNPs from biochemically fractionated infected nuclei. After treatment of infected cells with leptomycin B, a potent inhibitor of Crm1-mediated export, we isolated vRNP export complexes which, unexpectedly, were tethered to the host-cell chromatin with very high affinity. At late time points of infection, the cellular export receptor Crm1 also accumulated at the same regions of the chromatin as vRNPs, which led to a decrease in the export of other nuclear Crm1 substrates from the nucleus. Interestingly, chromatin targeting of vRNP export complexes brought them into association with Rcc1, the Ran guanine exchange factor responsible for generating RanGTP and driving Crm1-dependent nuclear export. Thus, influenza viruses gain preferential access to newly-generated host cell export machinery by targeting vRNP export complexes at the sites of Ran regeneration

    Age-related transcriptional changes in gene expression in different organs of mice support the metabolic stability theory of aging

    Get PDF
    Individual differences in the rate of aging are determined by the efficiency with which an organism transforms resources into metabolic energy thus maintaining the homeostatic condition of its cells and tissues. This observation has been integrated with analytical studies of the metabolic process to derive the following principle: The metabolic stability of regulatory networks, that is the ability of cells to maintain stable concentrations of reactive oxygen species (ROS) and other critical metabolites is the prime determinant of life span. The metabolic stability of a regulatory network is determined by the diversity of the metabolic pathways or the degree of connectivity of genes in the network. These properties can be empirically evaluated in terms of transcriptional changes in gene expression. We use microarrays to investigate the age-dependence of transcriptional changes of genes in the insulin signaling, oxidative phosphorylation and glutathione metabolism pathways in mice. Our studies delineate age and tissue specific patterns of transcriptional changes which are consistent with the metabolic stability–longevity principle. This study, in addition, rejects the free radical hypothesis which postulates that the production rate of ROS, and not its stability, determines life span

    Two Host Factors Regulate Persistence of H7a-Specific T Cells Injected in Tumor-Bearing Mice

    Get PDF
    BACKGROUND: Injection of CD8 T cells primed against immunodominant minor histocompatibility antigens (MiHA) such as H7(a) can eradicate leukemia and solid tumors. To understand why MiHA-targeted T cells have such a potent antitumor effect it is essential to evaluate their in vivo behavior. In the present work, we therefore addressed two specific questions: what is the proliferative dynamics of H7(a)-specifc T cells in tumors, and do H7(a)-specific T cells persist long-term after adoptive transfer? METHODOLOGY/PRINCIPAL FINDINGS: By day 3 after adoptive transfer, we observed a selective infiltration of melanomas by anti-H7(a) T cells. Over the next five days, anti-H7(a) T cells expanded massively in the tumor but not in the spleen. Thus, by day 8 after injection, anti-H7(a) T cells in the tumor had undergone more cell divisions than those in the spleen. These data strongly suggest that anti-H7(a) T cells proliferate preferentially and extensively in the tumors. We also found that two host factors regulated long-term persistence of anti-H7(a) memory T cells: thymic function and expression of H7(a) by host cells. On day 100, anti-H7(a) memory T cells were abundant in euthymic H7(a)-negative (B10.H7(b)) mice, present in low numbers in thymectomized H7(a)-positive (B10) hosts, and undetectable in euthymic H7(a)-positive recipients. CONCLUSIONS/SIGNIFICANCE: Although in general the tumor environment is not propitious to T-cell invasion and expansion, the present work shows that this limitation may be overcome by adoptive transfer of primed CD8 T cells targeted to an immunodominant MiHA (here H7(a)). At least in some cases, prolonged persistence of adoptively transferred T cells may be valuable for prevention of late cancer relapse in adoptive hosts. Our findings therefore suggest that it may be advantageous to target MiHAs with a restricted tissue distribution in order to promote persistence of memory T cells and thereby minimize the risk of cancer recurrence
    corecore