5,231 research outputs found

    A 12 μm ISOCAM survey of the ESO-Sculptor field

    Get PDF
    We present a detailed reduction of a mid-infrared 12 μm (LW10 filter) ISOCAM open time observation performed on the ESOSculptor Survey field (Arnouts et al. 1997, A&AS, 124, 163). A complete catalogue of 142 sources (120 galaxies and 22 stars), detected with high significance (equivalent to 5σ), is presented above an integrated flux density of 0.24 mJy. Star/galaxy separation is performed by a detailed study of colour-colour diagrams. The catalogue is complete to 1 mJy and, below this flux density, the incompleteness is corrected using two independent methods. The first method uses stars and the second uses optical counterparts of the ISOCAM galaxies; these methods yield consistent results. We also apply an empirical flux density calibration using stars in the field. For each star, the 12 μm flux density is derived by fitting optical colours from a multi-band χ^2 to stellar templates (BaSel-2.0) and using empirical optical-IR colour-colour relations. This article is a companion analysis to our 2007 paper (Rocca-Volmerange et al. 2007, A&A, 475, 801) where the 12 μm faint galaxy counts are presented and analysed per galaxy type with the evolutionary code PÉGASE.3

    The 12 μm ISO-ESO-Sculptor and 24 μm Spitzer faint counts reveal a population of ULIRGs as dusty massive ellipticals: Evolution by types and cosmic star formation

    Get PDF
    Context. Multi-wavelength galaxy number counts provide clues to the nature of galaxy evolution. The interpretation per galaxy type of the mid-IR faint counts obtained with ISO and Spitzer, consistent with the analysis of deep UV-optical-near IR galaxy counts, provide new constraints on the dust and stellar emission. Discovering the nature of new populations, such as high redshift ultra-luminous (≥10^(12) L_⊙) infrared galaxies (ULIRGs), is also crucial for understanding galaxy evolution at high redshifts. Aims. We first present the faint galaxy counts at 12 μm from the catalogue of the ISO-ESO-Sculptor Survey (ISO-ESS) published in a companion article (Seymour et al. 2007a, A&A, 475, 791). They go down to 0.31 mJy after corrections for incompleteness. We verify the consistency with the existing ISO number counts at 15 μm. Then we analyse the 12 μm (ISO-ESS) and the 24 μm (Spitzer) faint counts, to constrain the nature of ULIRGs, the cosmic star formation history and time scales for mass buildup. Methods. We show that the “normal” scenarios in our evolutionary code PÉGASE, which had previously fitted the deep UV-opticalnear IR counts, are unsuccessful at 12 μm and 24 μm. We thus propose a new ULIRG scenario adjusted to the observed cumulative and differential 12 μm and 24 μm counts and based on observed 12 μm and 25 μm IRAS luminosity functions and evolutionary optical/mid-IR colours from PÉGASE. Results. We succeed in simultaneously modelling the typical excess observed at 12 μm, 15 μm (ISO), and 24 μm (Spitzer) in the cumulative and differential counts by only changing 9% of normal galaxies (1/3 of the ellipticals) into ultra-bright dusty galaxies evolving as ellipticals, and interpreted as distant ULIRGs. These objects present similarities with the population of radio-galaxy hosts at high redshift. No number density evolution is included in our models even if minor starbursts due to galaxy interactions remain compatible with our results. Conclusions. Higher spectral and spatial resolution in the mid-IR, together with submillimeter observations using the future Herschel observatory, will be useful to confirm these results

    The 12 μm ISO-ESO-Sculptor and 24 μm Spitzer faint counts reveal a population of ULIRGs as dusty massive ellipticals: Evolution by types and cosmic star formation

    Get PDF
    Context. Multi-wavelength galaxy number counts provide clues to the nature of galaxy evolution. The interpretation per galaxy type of the mid-IR faint counts obtained with ISO and Spitzer, consistent with the analysis of deep UV-optical-near IR galaxy counts, provide new constraints on the dust and stellar emission. Discovering the nature of new populations, such as high redshift ultra-luminous (≥10^(12) L_⊙) infrared galaxies (ULIRGs), is also crucial for understanding galaxy evolution at high redshifts. Aims. We first present the faint galaxy counts at 12 μm from the catalogue of the ISO-ESO-Sculptor Survey (ISO-ESS) published in a companion article (Seymour et al. 2007a, A&A, 475, 791). They go down to 0.31 mJy after corrections for incompleteness. We verify the consistency with the existing ISO number counts at 15 μm. Then we analyse the 12 μm (ISO-ESS) and the 24 μm (Spitzer) faint counts, to constrain the nature of ULIRGs, the cosmic star formation history and time scales for mass buildup. Methods. We show that the “normal” scenarios in our evolutionary code PÉGASE, which had previously fitted the deep UV-opticalnear IR counts, are unsuccessful at 12 μm and 24 μm. We thus propose a new ULIRG scenario adjusted to the observed cumulative and differential 12 μm and 24 μm counts and based on observed 12 μm and 25 μm IRAS luminosity functions and evolutionary optical/mid-IR colours from PÉGASE. Results. We succeed in simultaneously modelling the typical excess observed at 12 μm, 15 μm (ISO), and 24 μm (Spitzer) in the cumulative and differential counts by only changing 9% of normal galaxies (1/3 of the ellipticals) into ultra-bright dusty galaxies evolving as ellipticals, and interpreted as distant ULIRGs. These objects present similarities with the population of radio-galaxy hosts at high redshift. No number density evolution is included in our models even if minor starbursts due to galaxy interactions remain compatible with our results. Conclusions. Higher spectral and spatial resolution in the mid-IR, together with submillimeter observations using the future Herschel observatory, will be useful to confirm these results

    Gamma Ray Burst Host Galaxies Have `Normal' Luminosities

    Get PDF
    The galactic environment of Gamma Ray Bursts can provide good evidence about the nature of the progenitor system, with two old arguments implying that the burst host galaxies are significantly subluminous. New data and new analysis have now reversed this picture: (A) Even though the first two known host galaxies are indeed greatly subluminous, the next eight hosts have absolute magnitudes typical for a population of field galaxies. A detailed analysis of the 16 known hosts (ten with red shifts) shows them to be consistent with a Schechter luminosity function with R=21.8±1.0R^{*} = -21.8 \pm 1.0 as expected for normal galaxies. (B) Bright bursts from the Interplanetary Network are typically 18 times brighter than the faint bursts with red shifts, however the bright bursts do not have galaxies inside their error boxes to limits deeper than expected based on the luminosities for the two samples being identical. A new solution to this dilemma is that a broad burst luminosity function along with a burst number density varying as the star formation rate will require the average luminosity of the bright sample (>>6×1058phs16 \times 10^{58} ph \cdot s^{-1} or >>1.7×1052ergs11.7 \times 10^{52} \cdot erg \cdot s^{-1}) to be much greater than the average luminosity of the faint sample (1058phs1\sim 10^{58} ph \cdot s^{-1} or 3×1051ergs1\sim 3 \times 10^{51} erg \cdot s^{-1}). This places the bright bursts at distances for which host galaxies with a normal luminosity will not violate the observed limits. In conclusion, all current evidence points to GRB host galaxies being normal in luminosity.Comment: 18 pages, 3 figures, Submitted to ApJLet

    Deepest Near-IR Surface Photometry of Galaxies in the Local Sphere of Influence

    Full text link
    We present near-IR, deep (4 mag deeper than 2MASS) imaging of 56 Local Volume galaxies. Global parameters such as total magnitudes and stellar masses have been derived and the new near-IR data combined with existing 21cm and optical B-band data. We present multiwavelength relations such as the HI mass-to-light ratio and investigate the maximum total baryonic mass a galaxy can have.Comment: 4 pages, 3 figures, To be published in the proceedings of "Galaxies in the Local Volume", ed. B. Koribalski, H. Jerje

    Human brain distinctiveness based on EEG spectral coherence connectivity

    Full text link
    The use of EEG biometrics, for the purpose of automatic people recognition, has received increasing attention in the recent years. Most of current analysis rely on the extraction of features characterizing the activity of single brain regions, like power-spectrum estimates, thus neglecting possible temporal dependencies between the generated EEG signals. However, important physiological information can be extracted from the way different brain regions are functionally coupled. In this study, we propose a novel approach that fuses spectral coherencebased connectivity between different brain regions as a possibly viable biometric feature. The proposed approach is tested on a large dataset of subjects (N=108) during eyes-closed (EC) and eyes-open (EO) resting state conditions. The obtained recognition performances show that using brain connectivity leads to higher distinctiveness with respect to power-spectrum measurements, in both the experimental conditions. Notably, a 100% recognition accuracy is obtained in EC and EO when integrating functional connectivity between regions in the frontal lobe, while a lower 97.41% is obtained in EC (96.26% in EO) when fusing power spectrum information from centro-parietal regions. Taken together, these results suggest that functional connectivity patterns represent effective features for improving EEG-based biometric systems.Comment: Key words: EEG, Resting state, Biometrics, Spectral coherence, Match score fusio

    Measurement of the current-phase relation of superconducting atomic contacts

    Get PDF
    We have probed the current-phase relation of an atomic contact placed with a tunnel junction in a small superconducting loop. The measurements are in quantitative agreement with the predictions of a resistively shunted SQUID model in which the Josephson coupling of the contact is calculated using the independently determined transmissions of its conduction channels.Comment: to be published in Physical Review Letter
    corecore