43 research outputs found

    Synergistic effect of antimetabolic and chemotherapy drugs in triple-negative breast cancer

    Full text link
    The triple-negative breast cancer (TNBC) subtype comprises approximately 15% of all breast cancers and is associated with poor long-term outcomes. Classical chemotherapy remains the standard of treatment, with toxicity and resistance being major limitations. TNBC is a high metabolic group, and antimetabolic drugs are effective in inhibiting TNBC cell growth. We analyzed the combined effect of chemotherapy and antimetabolic drug combinations in MDA-MB-231, MDA-MB-468 and HCC1143 human TNBC cell lines. Cells were treated with each drug or with drug combinations at a range of concentrations to establish the half-maximal inhibitory concentrations (IC50). The dose-effects of each drug or drug combination were calculated, and the synergistic or antagonistic effects of drug combinations were defined. Chemotherapy and antimetabolic drugs exhibited growth inhibitory effects on TNBC cell lines. Antimetabolic drugs targeting the glycolysis pathway had a synergistic effect with chemotherapy drugs, and antiglycolysis drug combinations also had a synergistic effect. The use of these drug combinations could lead to new therapeutic strategies that reduce chemotherapy drug doses, decreasing their toxic effect, or that maintain the doses but enhance their efficacy by their synergistic effect with other drugsMaría I. Lumbreras-Herrera and Andrea Zapater-Moros are supported by Consejería de Educación e Investigación de la Comunidad de Madrid (IND2018/BMD-9262). Elena López-Camacho is supported by the Spanish Economy and Competitiveness Ministry (PTQ2018–009760). This work is supported by an unrestricted grant from Roch

    A novel molecular analysis approach in colorectal cancer suggests new treatment opportunities

    Full text link
    Colorectal cancer (CRC) is a molecular and clinically heterogeneous disease. In 2015, the Colorectal Cancer Subtyping Consortium classified CRC into four consensus molecular subtypes (CMS), but these CMS have had little impact on clinical practice. The purpose of this study is to deepen the molecular characterization of CRC. A novel approach, based on probabilistic graphical models (PGM) and sparse k-means–consensus cluster layer analyses, was applied in order to functionally characterize CRC tumors. First, PGM was used to functionally characterize CRC, and then sparse k-means–consensus cluster was used to explore layers of biological information and establish classifications. To this aim, gene expression and clinical data of 805 CRC samples from three databases were analyzed. Three different layers based on biological features were identified: adhesion, immune, and molecular. The adhesion layer divided patients into high and low adhesion groups, with prognostic value. The immune layer divided patients into immune-high and immunelow groups, according to the expression of immune-related genes. The molecular layer established four molecular groups related to stem cells, metabolism, the Wnt signaling pathway, and extracellular functions. Immune-high patients, with higher expression of immune-related genes and genes involved in the viral mimicry response, may benefit from immunotherapy and viral mimicry-related therapies. Additionally, several possible therapeutic targets have been identified in each molecular group. Therefore, this improved CRC classification could be useful in searching for new therapeutic targets and specific therapeutic strategies in CRC diseas

    Utility of CYP2D6 copy number variants as prognostic biomarker in localized anal squamous cell carcinoma

    Full text link
    Background: Anal squamous cell carcinoma (ASCC) is an infrequent tumor whose treatment has not changed since the 1970s. The aim of this study is the identification of biomarkers allowing personalized treatments and improvement of therapeutic outcomes. Methods: Forty-six paraffin tumor samples from ASCC patients were analyzed by whole-exome sequencing. Copy number variants (CNVs) were identified and their relation to disease-free survival (DFS) was studied and validated in an independent retrospective cohort of 101 ASCC patients from the Multidisciplinary Spanish Digestive Cancer Group (GEMCAD). GEMCAD cohort proteomics allowed assessing the biological features of these tumors. Results: On the discovery cohort, the median age was 61 years old, 50% were males, stages I/II/III: 3 (7%)/16 (35%)/27 (58%), respectively, median DFS was 33 months, and overall survival was 45 months. Twenty-nine genes whose duplication was related to DFS were identified. The most representative was duplications of the CYP2D locus, including CYP2D6, CYP2D7P, and CYP2D8P genes. Patients with CYP2D6 CNV had worse DFS at 5 years than those with two CYP2D6 copies (21% vs. 84%; p <.0002, hazard ratio [HR], 5.8; 95% confidence interval [CI], 2.7–24.9). In the GEMCAD validation cohort, patients with CYP2D6 CNV also had worse DFS at 5 years (56% vs. 87%; p =.02, HR = 3.6; 95% CI, 1.1–5.7). Mitochondria and mitochondrial cell-cycle proteins were overexpressed in patients with CYP2D6 CNV. Conclusions: Tumor CYP2D6 CNV identified patients with a significantly worse DFS at 5 years among localized ASCC patients treated with 5-fluorouracil, mitomycin C, and radiotherapy. Proteomics pointed out mitochondria and mitochondrial cell-cycle genes as possible therapeutic targets for these high-risk patients. Plain Language Summary: Anal squamous cell carcinoma is an infrequent tumor whose treatment has not been changed since the 1970s. However, disease-free survival in late staged tumors is between 40% and 70%. The presence of an alteration in the number of copies of CYP2D6 gene is a biomarker of worse disease-free survival. The analysis of the proteins in these high-risk patients pointed out mitochondria and mitochondrial cell-cycle genes as possible therapeutic targets. Therefore, the determination of the number of copies of CYP2D6 allows the identification of anal squamous carcinoma patients with a high-risk of relapse that could be redirected to a clinical trial. Additionally, this study may be useful to suggest new treatment strategies to increase current therapy efficacyIdiPAZ, Grant/Award Number: Jesús Antolín Garciarena Fellowship; European Proteomics Infrastructure Consortium, Grant/Award Number: 823839, Horizon 2020 Programm

    PTRF/Cavin-1 and MIF Proteins Are Identified as Non-Small Cell Lung Cancer Biomarkers by Label-Free Proteomics

    Get PDF
    With the completion of the human genome sequence, biomedical sciences have entered in the “omics” era, mainly due to high-throughput genomics techniques and the recent application of mass spectrometry to proteomics analyses. However, there is still a time lag between these technological advances and their application in the clinical setting. Our work is designed to build bridges between high-performance proteomics and clinical routine. Protein extracts were obtained from fresh frozen normal lung and non-small cell lung cancer samples. We applied a phosphopeptide enrichment followed by LC-MS/MS. Subsequent label-free quantification and bioinformatics analyses were performed. We assessed protein patterns on these samples, showing dozens of differential markers between normal and tumor tissue. Gene ontology and interactome analyses identified signaling pathways altered on tumor tissue. We have identified two proteins, PTRF/cavin-1 and MIF, which are differentially expressed between normal lung and non-small cell lung cancer. These potential biomarkers were validated using western blot and immunohistochemistry. The application of discovery-based proteomics analyses in clinical samples allowed us to identify new potential biomarkers and therapeutic targets in non-small cell lung cancer

    A Novel Molecular Analysis Approach in Colorectal Cancer Suggests New Treatment Opportunities

    No full text
    Colorectal cancer (CRC) is a molecular and clinically heterogeneous disease. In 2015, the Colorectal Cancer Subtyping Consortium classified CRC into four consensus molecular subtypes (CMS), but these CMS have had little impact on clinical practice. The purpose of this study is to deepen the molecular characterization of CRC. A novel approach, based on probabilistic graphical models (PGM) and sparse k-means&ndash;consensus cluster layer analyses, was applied in order to functionally characterize CRC tumors. First, PGM was used to functionally characterize CRC, and then sparse k-means&ndash;consensus cluster was used to explore layers of biological information and establish classifications. To this aim, gene expression and clinical data of 805 CRC samples from three databases were analyzed. Three different layers based on biological features were identified: adhesion, immune, and molecular. The adhesion layer divided patients into high and low adhesion groups, with prognostic value. The immune layer divided patients into immune-high and immune-low groups, according to the expression of immune-related genes. The molecular layer established four molecular groups related to stem cells, metabolism, the Wnt signaling pathway, and extracellular functions. Immune-high patients, with higher expression of immune-related genes and genes involved in the viral mimicry response, may benefit from immunotherapy and viral mimicry-related therapies. Additionally, several possible therapeutic targets have been identified in each molecular group. Therefore, this improved CRC classification could be useful in searching for new therapeutic targets and specific therapeutic strategies in CRC disease

    Computational metabolism modeling predicts risk of distant relapse-free survival in breast cancer patients

    Full text link
    Aim: Differences in metabolism among breast cancer subtypes suggest that metabolism plays an important role in this disease. Flux balance analysis is used to explore these differences as well as drug response. Materials & methods: Proteomics data from breast tumors were obtained by mass-spectrometry. Flux balance analysis was performed to study metabolic networks. Flux activities from metabolic pathways were calculated and used to build prognostic models. Results: Flux activities of vitamin A, tetrahydrobiopterin and β-alanine metabolism pathways split our population into low- and high-risk patients. Additionally, flux activities of glycolysis and glutamate metabolism split triple negative tumors into low- and high-risk groups. Conclusion: Flux activities summarize flux balance analysis data and can be associated with prognosis in cancer

    miRNA profiling in renal carcinoma suggest the existence of a group of pro-angionenic tumors in localized clear cell renal carcinoma.

    Get PDF
    Renal cell carcinoma comprises a variety of entities, the most common being the clear-cell, papillary and chromophobe subtypes. These subtypes are related to different clinical evolution; however, most therapies have been developed for clear-cell carcinoma and there is not a specific treatment based on different subtypes. In this study, one hundred and sixty-four paraffin samples from primary nephrectomies for localized tumors were analyzed. MiRNAs were isolated and measured by microRNA arrays. Significance Analysis of Microarrays and Consensus Cluster algorithm were used to characterize different renal subtypes. The analyses showed that chromophobe renal tumors are a homogeneous group characterized by an overexpression of miR 1229, miR 10a, miR 182, miR 1208, miR 222, miR 221, miR 891b, miR 629-5p and miR 221-5p. On the other hand, clear cell renal carcinomas presented two different groups inside this histological subtype, with differences in miRNAs that regulate focal adhesion, transcription, apoptosis and angiogenesis processes. Specifically, one of the defined groups had an overexpression of proangiogenic microRNAs miR185, miR126 and miR130a. In conclusion, differences in miRNA expression profiles between histological renal subtypes were established. In addition, clear cell renal carcinomas had different expression of proangiogenic miRNAs. With the emergence of antiangiogenic drugs, these differences could be used as therapeutic targets in the future or as a selection method for tailoring personalized treatments

    Bayesian networks established functional differences between breast cancer subtypes

    No full text
    Breast cancer is a heterogeneous disease. In clinical practice, tumors are classified as hormonal receptor positive, Her2 positive and triple negative tumors. In previous works, our group defined a new hormonal receptor positive subgroup, the TN-like subtype, which had a prognosis and a molecular profile more similar to triple negative tumors. In this study, proteomics and Bayesian networks were used to characterize protein relationships in 96 breast tumor samples. Components obtained by these methods had a clear functional structure. The analysis of these components suggested differences in processes such as mitochondrial function or extracellular matrix between breast cancer subtypes, including our new defined subtype TN-like. In addition, one of the components, mainly related with extracellular matrix processes, had prognostic value in this cohort. Functional approaches allow to build hypotheses about regulatory mechanisms and to establish new relationships among proteins in the breast cancer context.ISSN:1932-620
    corecore