330 research outputs found

    Comment l'information et le conseil sur les aides techniques contribuent-ils de manière pertinente au processus d'expression des besoins de la personne?

    Get PDF
    National audienceL'expression des besoins en aide technique d'une personne en situation de handicap passe par la confrontation de son appréciation de ses incapacités dans le cadre de son projet de vie, avec les informations disponibles sur les aides existantes et leurs usages possibles. Dans ce texte nous essayons de cerner les apports des différents acteurs dans ce processus d'expression des besoins. Quelles informations doit-on regrouper, rechercher, lesquelles donner et par qui pour que la personne concernée puisse exprimer ce besoin de façon efficace

    Modifying upper-limb inter-joint coordination in healthy subjects by training with a robotic exoskeleton

    Get PDF
    Background: The possibility to modify the usually pathological patterns of coordination of the upper-limb in stroke survivors remains a central issue and an open question for neurorehabilitation. Despite robot-led physical training could potentially improve the motor recovery of hemiparetic patients, most of the state-of-the-art studies addressing motor control learning, with artificial virtual force fields, only focused on the end-effector kinematic adaptation, by using planar devices. Clearly, an interesting aspect of studying 3D movements with a robotic exoskeleton, is the possibility to investigate the way the human central nervous system deals with the natural upper-limb redundancy for common activities like pointing or tracking tasks. Methods: We asked twenty healthy participants to perform 3D pointing or tracking tasks under the effect of inter-joint velocity dependant perturbing force fields, applied directly at the joint level by a 4-DOF robotic arm exoskeleton. These fields perturbed the human natural inter-joint coordination but did not constrain directly the end-effector movements and thus subjects capability to perform the tasks. As a consequence, while the participants focused on the achievement of the task, we unexplicitly modified their natural upper-limb coordination strategy. We studied the force fields direct effect on pointing movements towards 8 targets placed in the 3D peripersonal space, and we also considered potential generalizations on 4 distinct other targets. Post-effects were studied after the removal of the force fields (wash-out and follow up). These effects were quantified by a kinematic analysis of the pointing movements at both end-point and joint levels, and by a measure of the final postures. At the same time, we analysed the natural inter-joint coordination through PCA. Results: During the exposition to the perturbative fields, we observed modifications of the subjects movement kinematics at every level (joints, end-effector, and inter-joint coordination). Adaptation was evidenced by a partial decrease of the movement deviations due to the fields, during the repetitions, but it occurred only on 21% of the motions. Nonetheless post-effects were observed in 86% of cases during the wash-out and follow up periods (right after the removal of the perturbation by the fields and after 30 minutes of being detached from the exoskeleton). Important inter-individual differences were observed but with small variability within subjects. In particular, a group of subjects showed an over-shoot with respect to the original unexposed trajectories (in 30% of cases), but the most frequent consequence (in 55% of cases) was the partial persistence of the modified upper-limb coordination, adopted at the time of the perturbation. Temporal and spatial generalizations were also evidenced by the deviation of the movement trajectories, both at the end-effector and at the intermediate joints and the modification of the final pointing postures towards targets which were never exposed to any field. Conclusions: Such results are the first quantified characterization of the effects of modification of the upper-limb coordination in healthy subjects, by imposing modification through viscous force fields distributed at the joint level, and could pave the way towards opportunities to rehabilitate pathological arm synergies with robots

    On the analysis of movement smoothness.

    No full text
    Quantitative measures of smoothness play an important role in the assessment of sensorimotor impairment and motor learning. Traditionally, movement smoothness has been computed mainly for discrete movements, in particular arm, reaching and circle drawing, using kinematic data. There are currently very few studies investigating smoothness of rhythmic movements, and there is no systematic way of analysing the smoothness of such movements. There is also very little work on the smoothness of other movement related variables such as force, impedance etc. In this context, this paper presents the first step towards a unified framework for the analysis of smoothness of arbitrary movements and using various data. It starts with a systematic definition of movement smoothness and the different factors that influence smoothness, followed by a review of existing methods for quantifying the smoothness of discrete movements. A method is then introduced to analyse the smoothness of rhythmic movements by generalising the techniques developed for discrete movements. We finally propose recommendations for analysing smoothness of any general sensorimotor behaviour

    On the analysis of movement smoothness

    Get PDF
    Quantitative measures of smoothness play an important role in the assessment of sensorimotor impairment and motor learning. Traditionally, movement smoothness has been computed mainly for discrete movements, in particular arm, reaching and circle drawing, using kinematic data. There are currently very few studies investigating smoothness of rhythmic movements, and there is no systematic way of analysing the smoothness of such movements. There is also very little work on the smoothness of other movement related variables such as force, impedance etc. In this context, this paper presents the first step towards a unified framework for the analysis of smoothness of arbitrary movements and using various data. It starts with a systematic definition of movement smoothness and the different factors that influence smoothness, followed by a review of existing methods for quantifying the smoothness of discrete movements. A method is then introduced to analyse the smoothness of rhythmic movements by generalising the techniques developed for discrete movements. We finally propose recommendations for analysing smoothness of any general sensorimotor behaviour

    Theme E: disabilities: analysis models and tools

    Get PDF
    International audienceThis paper presents the topics and the activity of the theme E “disabilities: analysis models and tools” within the GDR STIC Santé. This group has organized a conference and a workshop during the period 2011–2012. The conference has focused on technologies for cognitive, sensory and motor impairments, assessment and use study of assistive technologies, user centered method design and the place of ethics in these research topics. The objective of “bodily integration of technique” workshop, organized in the framework of Défi Sens (CNRS) was to develop a multidisciplinary approach (physiology, robotics and anthropology) of the relationships between body and technology taking as an example the prostheses for the compensation of sensorimotor disabilities. Efforts will focus on strengthening the development of a multidisciplinary research for the design of assistive technologies for elderly people and people with disabilities. The modelling of the user’s abilities and the designing of adaptable AT to the needs of the person will be carried out with other groups of this GDR and also with other GDRs

    Changing human upper-limb synergies with an exoskeleton using viscous fields

    Get PDF
    International audienceRobotic exoskeletons can apply forces distributed on the limbs of the subject they are connected to. This offers a great potential in the field of neurorehabilitation, to address the impairment of interjoint coordination in hemiparetic stroke patients. In these patients, the normal flexible joint rotation synergies are replaced by pathological fixed patterns of rotation. In this paper, we investigate how the concept of synergy can be exploited in the control of an upper limb exoskeleton. The long term goal is to develop a device capable of changing the joint synchronization of a patient performing exercises during rehabilitation. The paper presents a controller able of generating joint viscous torques in such a way that constraints on joint velocities can be imposed to the subject without constraining the hand motion. On another hand, the same formalism is used to describe synergies observed on the arm joint motion of subjects realizing pointing tasks. This approach is experimented on a 4 Degrees Of Freedom (DoF) upper arm exoskeleton with subjects performing pointing 3-dimensional tasks. Results exhibit the basic properties of the controller and show its capacity to impose an arbitrary chosen synergy without affecting the hand motion

    Inclusive Human Intention Prediction with Wearable Sensors: Machine Learning Techniques for the Reaching Task Use Case †

    Get PDF
    Human intentions prediction is gaining importance with the increase of human-robot interaction challenges in several contexts, like industrial and clinical. This paper compares Linear Discriminant Analysis (LDA) and Random Forest (RF) performance in predicting the intention of moving towards a target during reaching movements, on ten subjects wearing four electromagnetic sensors. LDA and RF prediction accuracy is compared with respect to observation-sample dimension and noise presence, training and prediction time. Both algorithms achieved good accuracy, which improves as the sample dimension increases, although LDA presents better results for the current dataset

    Review of upper limb kinematics after cervical spinal cord injury: Implications for rehabilitation

    Get PDF
    IntroductionThe aim of this literature review is to provide a clear understanding of motor control and kinematic changes during open-chain upper limb (UL) movements after tetraplegia.MethodUsing data from MEDLINE between 1966 and August 2014, we investigated kinematic UL studies after tetraplegia.ResultsWe included fourteen control case and three series case studies with a total of 161 SCI participants and 126 healthy control participants. SCI participants efficiently perform a broad range of tasks with their UL This is achieved by effective scapulothoracic and glenohumeral compensation which provide a dynamic mechanical coupling between the shoulder and elbow joints thus palliating elbow extension despite triceps brachii paralysis. The mechanism is incomplete, however, since C5-C6 SCI individuals are forced to reduce overhead workspace to keep the elbow extended and to maintain the mechanical dynamic interaction between the shoulder and elbow. Furthermore, motion slowing is a clear kinematic characteristic, caused by:– decreased strength;– triceps brachii paralysis disrupting normal agonist-antagonist co-contraction;– accuracy requirements at movement endpoint;– grasping.Grasping requires a prolonged deceleration phase during transport to ensure hand placement with respect to the to-be-grasped object then wrist extension during grasping to elicit either whole hand or lateral grip. Contrary to the normal pattern, where grasping is prepared during the transport phase, SCI individuals transport the wrist in flexion leading to passive finger opening that did not attest a grip preparation particularly if object size is greater than maximal grip aperture. The pattern (wrist flexed then extended) indicates that reaching and grasping are performed consecutively suggesting that these two phases are independent. Elbow extension restoration causes increased elbow stiffness resulting in increased movement velocity, reduced need for glenohumeral compensation, and overall improved motor control.ConclusionRehabilitation and surgical restoration should take these kinematic characteristics into account to reinforce proximal and distal compensations allowing elbow extension and grasp using tenodesis and consequently favoring greater autonomy of individuals after SCI
    corecore