11 research outputs found

    SARS-CoV-2 uses CD4 to infect T helper lymphocytes

    Get PDF
    The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the agent of a major global outbreak of respiratory tract disease known as Coronavirus Disease 2019 (COVID-19). SARS-CoV-2 infects mainly lungs and may cause several immune-related complications, such as lymphocytopenia and cytokine storm, which are associated with the severity of the disease and predict mortality. The mechanism by which SARS-CoV-2 infection may result in immune system dysfunction is still not fully understood. Here, we show that SARS-CoV-2 infects human CD4+ T helper cells, but not CD8+ T cells, and is present in blood and bronchoalveolar lavage T helper cells of severe COVID-19 patients. We demonstrated that SARS-CoV-2 spike glycoprotein (S) directly binds to the CD4 molecule, which in turn mediates the entry of SARS-CoV-2 in T helper cells. This leads to impaired CD4 T cell function and may cause cell death. SARS-CoV-2-infected T helper cells express higher levels of IL-10, which is associated with viral persistence and disease severity. Thus, CD4-mediated SARS-CoV-2 infection of T helper cells may contribute to a poor immune response in COVID-19 patients.</p

    SARS-CoV-2 uses CD4 to infect T helper lymphocytes

    Get PDF
    The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the agent of a major global outbreak of respiratory tract disease known as Coronavirus Disease 2019 (COVID-19). SARS-CoV-2 infects mainly lungs and may cause several immune-related complications, such as lymphocytopenia and cytokine storm, which are associated with the severity of the disease and predict mortality. The mechanism by which SARS-CoV-2 infection may result in immune system dysfunction is still not fully understood. Here, we show that SARS-CoV-2 infects human CD4+ T helper cells, but not CD8+ T cells, and is present in blood and bronchoalveolar lavage T helper cells of severe COVID-19 patients. We demonstrated that SARS-CoV-2 spike glycoprotein (S) directly binds to the CD4 molecule, which in turn mediates the entry of SARS-CoV-2 in T helper cells. This leads to impaired CD4 T cell function and may cause cell death. SARS-CoV-2-infected T helper cells express higher levels of IL-10, which is associated with viral persistence and disease severity. Thus, CD4-mediated SARS-CoV-2 infection of T helper cells may contribute to a poor immune response in COVID-19 patients.</p

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    Characterization of Regulatory T Cells in Patients Infected by <i>Leishmania Infantum</i>

    No full text
    High IL-10 levels are pivotal to parasite survival in visceral leishmaniasis (VL). Antigenic stimuli induce IL-10 expression and release of adenosine by CD39/CD73. Due their intrinsic ability to express IL-10 and produce adenosine from extracellular ATP, we evaluated the IL-10, CD39, and CD73 expression by Regulatory T cells (Treg) correlated with VL pathology. Using flow cytometry, Treg cells was analyzed in peripheral blood samples from VL patients (in the presence and absence of Leishmania infantum soluble antigen (SLA)) and healthy individuals (negative endemic control—NEC group), without any treatment. Additionally, IL-10 levels in leukocytes culture supernatant were measured in all groups by ELISA assay. VL patients presented more Treg frequency than NEC group, independently of stimulation. ELISA results demonstrated that SLA induced higher IL-10 expression in the VL group. However, the NEC group had a higher Treg IL-10+ compared to the VL group without stimulation and SLA restored the IL-10 in Treg. Additionally, an increase in Treg CD73+ in the VL group independently of stimuli compared to that in the NEC group was observed. We suggest that Treg are not the main source of IL-10, while the CD73 pathway may be an attempt to modulate the exacerbation of immune response in VL disease

    Vasorelaxation Induced by a New Naphthoquinone-Oxime is Mediated by NO-sGC-cGMP Pathway

    No full text
    It has been established that oximes cause endothelium-independent relaxation in blood vessels. In the present study, the cardiovascular effects of the new oxime 3-hydroxy-4–(hydroxyimino)-2-(3-methylbut-2-enylnaphtalen-1(4H)-one (Oxime S1) derived from lapachol were evaluated. In normotensive rats, administration of Oxime S1 (10, 15, 20 and 30 mg/Kg, i.v.) produced dose-dependent reduction in blood pressure. In isolated aorta and superior mesenteric artery rings, Oxime S1 induced endothelium-independent and concentration-dependent relaxations (10−8 M to 10−4 M). In addition, Oxime S1-induced vasorelaxations were attenuated by hydroxocobalamin or methylene blue in aorta and by PTIO or ODQ in mesenteric artery rings, suggesting a role for the nitric oxide (NO) pathway. Additionally, Oxime S1 (30 and 100 µM) significantly increased NO concentrations (13.9 ± 1.6 nM and 17.9 ± 4.1 nM, respectively) measured by nitric oxide microsensors. Furthermore, pre-contraction with KCl (80 mM) prevented Oxime S1-derived vasorelaxation in endothelium-denuded aortic rings. Of note, combined treatment with potassium channel inhibitors also reduced Oxime S1-mediated vasorelaxation suggesting a role for potassium channels, more precisely Kir, Kv and KATP channels. We observed the involvement of BKCa channels in Oxime S1-induced relaxation in mesenteric artery rings. In conclusion, these data suggest that the Oxime S1 induces hypotension and vasorelaxation via NO pathway by activating soluble guanylate cyclase (sGC) and K+ channels

    Antioxidant and vasorelaxant activities induced by northeastern Brazilian fermented grape skins

    No full text
    Abstract Background In northeastern Brazil, grape pomace has become a potential alternative byproduct because of the recover phenolic compounds from the vinification process. Comparative analyses were performed between lyophilized extract of grape skins from pomace, described as fermented (FGS), and fresh, unfermented (UGS) grape skins to show the relevant brand’s composition upon the first maceration in winemaking. Methods The use of in vitro testing such as Folin-Ciocalteu’s, DPPH free radical scavenger and HPLC methods were performed to evidence antioxidant effect and phenolic compounds. Additionally, vascular reactivity studies were performed in third-order branches of rat superior mesenteric arteries, which were obtained and placed in organ baths containing Krebs-Henseleit solution, maintained at 37 °C, gassed with a mixture of 95% O2 and 5% CO2, and maintained at pH 7.4. The in situ formation of reactive oxygen species (ROS) was evaluated in small mesenteric rings using oxidative fluorescent dihydroethidium dye. Results We found higher phenolic content and antioxidant activity in FGS when compared to UGS. HPLC analyses identified a significant number of phenolic compounds with antioxidant potential in both samples. The vasorelaxant effect induced by FGS was more potent than that induced by UGS, and the activity was attenuated after removal of vascular endothelium or by blockade of endothelium-derived relaxing factors, such as NO and EDHF. Conclusions The FGS extract may be a great source of natural polyphenol products with potent antioxidant effects and endothelium-dependent vasodilatory actions involving NO and EDHF pathways
    corecore