60 research outputs found

    Impacts of artificial nighttime light on moths and their food plants

    Get PDF
    Over the last 150 years the natural nighttime environment has been drastically altered by the proliferation of artificial light. The amount of artificial light at night is on the increase, and there is a current trend to replace older lighting with more energy efficient types such as light emitting diodes (LEDs) or ceramic metal halide; in Cornwall, UK, there has been a relatively recent replacement of the street lighting, from low pressure sodium to ceramic metal halide. Alongside the increasing amount of artificial nighttime light, recent research has highlighted declines in macro moth numbers. Given the well-known ‘flight-to-light’ behaviour of moths, and the negative effects this behaviour can have, alongside other known and potential ways in which nighttime light can affect moths, the increasing amount of artificial light in the environment is a suspected contributor to the declines. It is particularly important to understand how modern lighting technologies will impact upon moths, as different spectra of light are known to vary in terms of how attractive they are. As a means to determine the potential impact of different street lighting types on moths, particularly the ceramic metal halide lighting rolled out in Cornwall, UK, we compared the attractiveness to macro moths, of a number of increasingly used, energy efficient, street lighting types. We found that shorter wavelength metal halide lighting attracted significantly more individuals and species of moth than longer wavelength high pressure sodium lighting. In a second experiment, we also found ceramic metal halide lighting to be more attractive to macro moths than LED lighting. Reduced emissions of short wavelength UV light was deemed the likely reason behind the fewer macro moths attracted to the high pressure sodium and LED lighting. Interestingly, we also found striking differences in the relative attractiveness of the different lighting types to different moth groups. The metal halide lighting attracted significantly more Noctuidae than high pressure sodium lighting, whereas both high pressure sodium and metal halide lighting were equally attractive to Geometridae. Understanding accurately the extent to which different groups of moth are attracted to different wavelengths of light could be useful in determining the impact of artificial light on moth populations. In addition to impacting moths through attraction, artificial light has the potential to alter the day length as perceived by organisms, which at mid- to high latitudes is utilised by certain species as an abiotic cue to ensure the coincidence of development with favourable environmental conditions. Due to a paucity of knowledge on how raised ambient nighttime light levels affect moths and the trophic levels with which they interact, we carried out analyses into the impact of nighttime light on the winter moth and its host plant oak; a well-studied model system, where synchrony between moth egg hatch and oak budburst is important for the moth’s survival. Firstly we carried out an analysis looking at the relationship between the amount of nighttime light and the date of oak budburst. Spatially referenced budburst dates were matched with satellite imagery of nighttime lighting and average spring temperature data, and the relationship between the variables was analysed. Model predictions suggested that oak budburst occurs earlier in brighter areas. In addition, the predicted advance of budburst in brighter areas was still apparent when analysing only the data points that fell outside of large urban areas, where the urban heat island effect is likely reduced. The findings suggested that artificial nighttime light may be causing an advance in oak budburst. To follow up the spatial analysis we carried out a field experiment. We used light cages that simulated various nighttime lighting scenarios to test whether oak budburst and winter moth egg hatch were affected by low intensity light at night. In contrast to the spatial analysis, there was no significant relationship found between light treatment and the phenology of either oak budburst or winter moth egg hatch. However, there was a suggestion in the data that the higher buds of the oak saplings emerged earlier in the yellow light treatment, highlighting the need for further research into the potential impact of artificial nighttime light on phenology and species interactions. In conclusion, the findings of this research project provide information useful to those seeking ecologically sensitive lighting solutions, and also highlight a potential tool to assist in determining whether light at night is a causative factor behind apparent moth declines. In addition, they suggest that artificial light at night may be affecting the phenology of an ecological system at a national scale. Finally, this research project has highlighted the complexity of the ecological impacts of artificial light at night, and also a need for further research.The European Social Fund (ESF) and Great Western Research (GWR

    Attention function after childhood stroke,”

    Get PDF
    Abstract We investigated attentional outcome after childhood stroke and orthopedic diagnosis in medical controls. Twenty-nine children with focal stroke lesions and individually matched children with clubfoot or scoliosis were studied with standardized attention and neuroimaging assessments. Stroke lesions were quite varied in location and commonly involved regions implicated in Posner's model of attention networks. Children with stroke lesions performed significantly more poorly regarding attention function compared with controls. Performance on the Starry Night, a test demanding alerting and sensory-orienting but not executive attention function, was significantly associated with lesion size in the alerting and sensory-orienting networks but not the executive attention network. Furthermore, earlier age at lesion acquisition was significantly associated with poorer attention function even when lesion size was controlled. These findings support the theory of dissociable networks of attention and add to evidence from studies of children with diffuse and focal brain damage that early insults are associated with worse long-term outcomes in many domains of neuropsychological function. In addition, these results may provide clues towards the understanding of mechanisms underlying attention in children. (JINS, 2004, 10, 976-986.

    Caenorhabditis elegans N-glycan Core β-galactoside Confers Sensitivity towards Nematotoxic Fungal Galectin CGL2

    Get PDF
    The physiological role of fungal galectins has remained elusive. Here, we show that feeding of a mushroom galectin, Coprinopsis cinerea CGL2, to Caenorhabditis elegans inhibited development and reproduction and ultimately resulted in killing of this nematode. The lack of toxicity of a carbohydrate-binding defective CGL2 variant and the resistance of a C. elegans mutant defective in GDP-fucose biosynthesis suggested that CGL2-mediated nematotoxicity depends on the interaction between the galectin and a fucose-containing glycoconjugate. A screen for CGL2-resistant worm mutants identified this glycoconjugate as a Galβ1,4Fucα1,6 modification of C. elegans N-glycan cores. Analysis of N-glycan structures in wild type and CGL2-resistant nematodes confirmed this finding and allowed the identification of a novel putative glycosyltransferase required for the biosynthesis of this glycoepitope. The X-ray crystal structure of a complex between CGL2 and the Galβ1,4Fucα1,6GlcNAc trisaccharide at 1.5 Å resolution revealed the biophysical basis for this interaction. Our results suggest that fungal galectins play a role in the defense of fungi against predators by binding to specific glycoconjugates of these organisms

    Imperfection and radiation damage in protein crystals studied with coherent radiation

    Get PDF
    Fringes and speckles occur within diffraction spots when a crystal is illuminated with coherent radiation during X-ray diffraction. The additional information in these features provides insight into the imperfections in the crystal at the sub-micrometre scale. In addition, these features can provide more accurate intensity measurements (e.g. by model-based profile fitting), detwinning (by distinguishing the various components), phasing (by exploiting sampling of the molecular transform) and refinement (by distinguishing regions with different unit-cell parameters). In order to exploit these potential benefits, the features due to coherent diffraction have to be recorded and any change due to radiation damage properly modelled. Initial results from recording coherent diffraction at cryotemperatures from polyhedrin crystals of approximately 2 µm in size are described. These measurements allowed information about the type of crystal imperfections to be obtained at the sub-micrometre level, together with the changes due to radiation damage
    corecore