29 research outputs found

    A comparison of a one-dimensional finite element method and the transfer matrix method for the computation of wind music instrument impedance

    Get PDF
    International audienceThis work presents a computation tool for the calculation of wind instrument input impedance in the context of linear planar wave propagation with visco-thermal losses. The originality of the approach lies in the usage of a specific and simple 1D finite element method (FEM). The popular Transfer Matrix Method (TMM) is also recalled and a seamless formulation is proposed which unifies the cases cylinders vs. cones. Visco-thermal losses, which are natural dissipation in the system, are not exactly taken into account by this method when arbitrary shapes are considered. The introduction of an equivalent radius leads to an approximation that we quantify using the FEM method. The equation actually solved by the TMM in this case is exhibited. The accuracy of the two methods (FEM and TMM) and the associated computation times are assessed and compared. Although the TMM is more efficient in lossless cases and for lossy cylinders, the FEM is shown to be more efficient when targeting a specific precision in the realistic case of a lossy trumpet. Some additional features also exhibit the robustness and flexibility of the FEM over the TMM. All the results of this article are computed using the open-source python toolbox OpenWind

    Perceptive study of an optimal trumpet using simulated sounds

    Get PDF
    International audienceDans le cadre de l'ÂŽ etude de la qualitĂ© des instruments de musique, nous avons optimisĂ©, ` a partir de simulations sonores par modĂšle physique, la justesse de trompettes en faisant varier des paramĂštres gĂ©omĂ©triques de l'embouchure et de la branche d'embouchure. L'objectif de ce travail est de dĂ©terminer, par un test d'ÂŽ ecoute des sons simulĂ©s, dans quelles mesures les diffĂ©rences entre la gĂ©omĂ©trie optimale et des gĂ©omĂ©tries courantes sont perceptibles. Trois trompettes d'intĂ©rĂȘt sontĂ©tudiĂ©essontĂ©tudiĂ©es : la trompette optimale, la trompette de rĂ©fĂ©rence (trompette initiale lors de la procĂ©dure d'optimisation), et une trompettĂ© elĂ©mentaire (trompette admissible, mais dont la valeur de la justesse est faible). L'expĂ©rience perceptive est unĂ© epreuve d'ÂŽ ecoute par paires de sons (same-different test) impliquant 32 participants (musiciens ou non). DeuxĂ©preuvesDeuxĂ©preuves sont proposĂ©es : l'ÂŽ evaluation des diffĂ©rences perceptives entre les 3 instrumentsĂ©tudiĂ©sinstrumentsĂ©tudiĂ©s, et l'ÂŽ evaluation des diffĂ©rences perceptives entre diffĂ©rents sons du mĂȘme instrument. Les rĂ©sultats de chaque participant pour chaque famille de sons sont reprĂ©sentĂ©s par la matrice de confusion de l'ÂŽ epreuve same-different, de laquelle diffĂ©rents indicateurs de performances issus de la thĂ©orie de dĂ©tection du signal sont extraits. Les conclusions montrent que la trompette optimale et la trompette de rĂ©fĂ©rence prĂ©sentent bien des diffĂ©rences perceptibles, les performances de dĂ©tection des sujets musiciensĂ©tant par ailleurs significativement supĂ©rieuressupĂ©rieuresĂ  celles des sujets non-musiciens

    The Virtual Workshop OpenWinD : a Python Toolbox Assisting Wind Instrument Makers

    Get PDF
    International audienceOur project develops the software OpenWInD for wind instrument making. A first feature is the prediction of the acoustical response of the instrument from the knowledge of its shape (bore and holes). This can be done in the harmonic (impedance computation) and temporal (sound computation) domains. It can account for various physical situations (non constant temperature, coupling with an embouchure, ...). Discretization is done in space with 1D spectral finite elements and in time with energy consistent finite differences. The second feature is the reconstruction of the shape of an instrument that fulfils a certain objective. This can be used for bore reconstruction, and instrument design. The latter is based on a strong interaction with makers and musicians, aiming at defining interesting design parameters and objective criteria, from their point of view. After a quantitative transcription of these criteria, under the form of a cost function and a design parameter space, we implement various gradient-based optimization techniques. More precisely, we exploit the fact that the sound waves inside the instruments are solution to acoustic equations in pipes, which gives us access to the Full Waveform Inversion technique (FWI) where the gradient is characterized as the solution to another wave equation. The computational framework is flexible (in terms of models, formulations, coupling terms, objective functions...) and offers the possibility to modify the criterion by the user. The goal is to proceed iteratively between the instrument makers and the numerical optimisation tool (OpenWInD) in order to achieve, finally, criteria that are representative for the makers. In the presentation, we will demonstrate and discuss some comparisons between measurements and simulation on real instruments

    A multi-modal dance corpus for research into interaction between humans in virtual environments

    Get PDF
    We present a new, freely available, multimodal corpus for research into, amongst other areas, real-time realistic interaction between humans in online virtual environments. The specific corpus scenario focuses on an online dance class application scenario where students, with avatars driven by whatever 3D capture technology is locally available to them, can learn choreographies with teacher guidance in an online virtual dance studio. As the dance corpus is focused on this scenario, it consists of student/teacher dance choreographies concurrently captured at two different sites using a variety of media modalities, including synchronised audio rigs, multiple cameras, wearable inertial measurement devices and depth sensors. In the corpus, each of the several dancers performs a number of fixed choreographies, which are graded according to a number of specific evaluation criteria. In addition, ground-truth dance choreography annotations are provided. Furthermore, for unsynchronised sensor modalities, the corpus also includes distinctive events for data stream synchronisation. The total duration of the recorded content is 1 h and 40 min for each single sensor, amounting to 55 h of recordings across all sensors. Although the dance corpus is tailored specifically for an online dance class application scenario, the data is free to download and use for any research and development purposes

    Optimisation d’un instrument de musique de type cuivre basĂ©e sur des simulations sonores par modĂšle physique

    No full text
    This thesis presents a method for design optimization of brass wind instruments. The shape of a trumpet's bore is optimized to improve intonation or the instrument timbre using a physics-based sound simulation model. This physics-based model consists of an acoustic model of the resonator, a mechanical model of the excitator and a model of the coupling between the excitator and the resonator. The simulation uses the harmonic balance technique to computate sounds in permanent regime, representative of the shape of the resonator according tocontrol parameters of the excitator (virtual musician). Optimization problems are formulated, in which the objective function to be minimized and the constraints define features of the instrument’s quality regarding the different playable notes. The design variables are the physical dimensions of the resonator. Given the computationally expensive function evaluation and the unavailability of gradients, a surrogate-assisted optimization framework is implemented using the mesh adaptive direct search algorithm (MADS). Two examples (with two and five design optimization variables) demonstrate the validity of the approach. Results show that significant improvement of intonation can be robustly achieved at reasonable computational cost. At last, two perceptive studies are carried out in order to confirm, on the one hand, the capacity of the physics based model to elicit differences between the instruments and, on the other hand, the capacity of the optimization method to propose perceptually distinct instruments.Le travail prĂ©sentĂ© dans cette thĂšse s’intĂ©resse Ă  l’optimisation de la gĂ©omĂ©trie interne (la perce) des instruments de musique Ă  vent de la famille des cuivres. L’originalitĂ© de l’approche repose sur l’utilisation de simulations sonores par modĂšle physique pour dĂ©terminer la perce optimisant des qualitĂ©s sonores telles que la justesse ou le timbre de l’instrument. Le modĂšle physique utilisĂ©, reprĂ©sentant le fonctionnement de l’excitateur, du rĂ©sonateur et du couplage entre ces deux Ă©lĂ©ments, permet d’obtenir des sons reprĂ©sentatifs de leur interaction. La mĂ©thode de simulation utilisĂ©e est l’équilibrage harmonique, qui produit des simulations sonores en rĂ©gime permanent, reprĂ©sentatives de la perce et des paramĂštres de contrĂŽle du musicien virtuel. DiffĂ©rents problĂšmes d’optimisation sont formulĂ©s, pour lesquels la fonction objectif Ă  minimiser et les contraintes reprĂ©sentent des attributs de la qualitĂ© des notes, la variable d’optimisation Ă©tant les dimensions gĂ©omĂ©triques de la perce. Étant donnĂ© les coĂ»ts de calcul et l'indisponibilitĂ© des dĂ©rivĂ©es de la fonction objectif, une mĂ©thode d’optimisation par recherche directe assistĂ©e de mĂ©tamodĂšles est choisie (MADS). Deux exemples d'optimisation de la justesse ou du timbre d'une trompette, avec 2 et 5 variables d’optimisation, valident l'approche. Les rĂ©sultats montrent que la mĂ©thode optimise la justesse globale de l’instrument de maniĂšre robuste, pour un coĂ»t raisonnable. Enfin, deux Ă©tudes perceptives Ă©tudient, d’une part, la capacitĂ© du modĂšle physique Ă  produire des sons perceptivement diffĂ©rents entre des instruments diffĂ©rents, et, d’autre part, comment les diffĂ©rences entre un instrument nominal et un instrument optimisĂ© sont perçues

    Brass instrument optimization Using Physics-Based Sound Simulations

    No full text
    Le travail prĂ©sentĂ© dans cette thĂšse s’intĂ©resse Ă  l’optimisation de la gĂ©omĂ©trie interne (la perce) des instruments de musique Ă  vent de la famille des cuivres. L’originalitĂ© de l’approche repose sur l’utilisation de simulations sonores par modĂšle physique pour dĂ©terminer la perce optimisant des qualitĂ©s sonores telles que la justesse ou le timbre de l’instrument. Le modĂšle physique utilisĂ©, reprĂ©sentant le fonctionnement de l’excitateur, du rĂ©sonateur et du couplage entre ces deux Ă©lĂ©ments, permet d’obtenir des sons reprĂ©sentatifs de leur interaction. La mĂ©thode de simulation utilisĂ©e est l’équilibrage harmonique, qui produit des simulations sonores en rĂ©gime permanent, reprĂ©sentatives de la perce et des paramĂštres de contrĂŽle du musicien virtuel. DiffĂ©rents problĂšmes d’optimisation sont formulĂ©s, pour lesquels la fonction objectif Ă  minimiser et les contraintes reprĂ©sentent des attributs de la qualitĂ© des notes, la variable d’optimisation Ă©tant les dimensions gĂ©omĂ©triques de la perce. Étant donnĂ© les coĂ»ts de calcul et l'indisponibilitĂ© des dĂ©rivĂ©es de la fonction objectif, une mĂ©thode d’optimisation par recherche directe assistĂ©e de mĂ©tamodĂšles est choisie (MADS). Deux exemples d'optimisation de la justesse ou du timbre d'une trompette, avec 2 et 5 variables d’optimisation, valident l'approche. Les rĂ©sultats montrent que la mĂ©thode optimise la justesse globale de l’instrument de maniĂšre robuste, pour un coĂ»t raisonnable. Enfin, deux Ă©tudes perceptives Ă©tudient, d’une part, la capacitĂ© du modĂšle physique Ă  produire des sons perceptivement diffĂ©rents entre des instruments diffĂ©rents, et, d’autre part, comment les diffĂ©rences entre un instrument nominal et un instrument optimisĂ© sont perçues.This thesis presents a method for design optimization of brass wind instruments. The shape of a trumpet's bore is optimized to improve intonation or the instrument timbre using a physics-based sound simulation model. This physics-based model consists of an acoustic model of the resonator, a mechanical model of the excitator and a model of the coupling between the excitator and the resonator. The simulation uses the harmonic balance technique to computate sounds in permanent regime, representative of the shape of the resonator according tocontrol parameters of the excitator (virtual musician). Optimization problems are formulated, in which the objective function to be minimized and the constraints define features of the instrument’s quality regarding the different playable notes. The design variables are the physical dimensions of the resonator. Given the computationally expensive function evaluation and the unavailability of gradients, a surrogate-assisted optimization framework is implemented using the mesh adaptive direct search algorithm (MADS). Two examples (with two and five design optimization variables) demonstrate the validity of the approach. Results show that significant improvement of intonation can be robustly achieved at reasonable computational cost. At last, two perceptive studies are carried out in order to confirm, on the one hand, the capacity of the physics based model to elicit differences between the instruments and, on the other hand, the capacity of the optimization method to propose perceptually distinct instruments
    corecore