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Summary1

This work presents a computation tool for the cal-2

culation of wind instrument input impedance in the3

context of linear planar wave propagation with visco-4

thermal losses. The originality of the approach lies in5

the usage of a specific and simple 1D finite element6

method (FEM). The popular Transfer Matrix Method7

(TMM) is also recalled and a seamless formulation is8

proposed which unifies the cases cylinders vs. cones.9

Visco-thermal losses, which are natural dissipation in10

the system, are not exactly taken into account by this11

method when arbitrary shapes are considered. The12

introduction of an equivalent radius leads to an ap-13

proximation that we quantify using the FEM method.14

The equation actually solved by the TMM in this case15

is exhibited. The accuracy of the two methods (FEM16

and TMM) and the associated computation times are17

assessed and compared. Although the TMM is more18

efficient in lossless cases and for lossy cylinders, the19

FEM is shown to be more efficient when targeting a20

specific precision in the realistic case of a lossy trum-21

pet. Some additional features also exhibit the robust-22

ness and flexibility of the FEM over the TMM. All the23

results of this article are computed using the open-24

source python toolbox OpenWind.25

1 Introduction26

The input impedance of wind instruments is27

defined as its frequency dependent linear re-28

sponse to an input excitation. This physi-29

cal quantity is of considerable advantage in un-30

derstanding the instrument’s playing quality, and31

eventually its musical behavior [Campbell(2004),32

Chaigne and Kergomard(2016)]. The impedance is33

used for various purposes, such as the analysis34

of the instrument’s playing properties, the syn-35

thesis of their sounds and the design of their36

shape. Indeed, many studies try to corre-37

late the impedance features to the instrument38

actual intonation, stability, tone [Backus(1976),39

Braden et al.(2009), Campbell(2004)]. Many syn-40

thesis methods rely on the input impedance knowl- 41

edge to produce realistic sounds [Silva et al.(2014)], 42

in order to assess the quality of the physical model, 43

or to provide musicians with virtual instruments. 44

Wind instrument design is the goal of many cur- 45

rent initiatives, which try to either reconstruct bores, 46

solve inverse problems based on their measured in- 47

put impedance [Kausel(2001)], improve existing in- 48

struments [Tournemenne et al.(2017)] or even develop 49

new instruments [Buys et al.(2017)] to fulfill the as- 50

pirations of musicians. 51

On the one hand, since the pioneering work 52

of Webster [Webster(1947)], many methods can 53

measure the input impedance with varying pre- 54

cision and frequency range [Le Roux et al.(2008), 55

Caussé et al.(1984), Sharp et al.(2011)]. On the other 56

hand, physical models associated with computa- 57

tion methods can be used to calculate the in- 58

put impedance. The current reference computation 59

method is the transfer matrix method (TMM), which 60

has been used in the context of wind instruments 61

for more than 40 years [Plitnik and Strong(1979), 62

Mapes-Riordan(1993)]. The underlying physical 63

model can assume plane or spherical wave propaga- 64

tion in the pipe, mono or multi-modal propagation, 65

viscothermal losses at the pipe walls and a radiation 66

impedance at the pipe output, etc. 67

The objective of this paper is to propose a new 68

method for the computation of the input impedance, 69

which could noticeably facilitate and broaden numer- 70

ical instrument design approaches. It is not our pur- 71

pose in this article to discuss the physical model 72

and especially the validity of the underlying physi- 73

cal assumptions. Although this topic is of great in- 74

terest, and must rely on precise simulation / mea- 75

surement comparisons, the present work only fo- 76

cuses on technical aspects of the impedance com- 77

putation. The methodology is here presented in 78

the simplest possible realistic acoustical case, but 79

the present article will serve as a basis to consider 80

more general physical models in the future. We 81

will present a new computation approach based on 82

a one-dimensional finite element method used on the 83

Telegraph equations with viscothermal losses. No- 84
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tice first that, compared to the TMM, the proposed85

approach is therefore simply another way of solv-86

ing the same equations. Notice also that the objec-87

tive is not to solve the acoustical equations in 3D88

[Lefebvre and Scavone(2012)], nor the Navier-Stokes89

equations in 3D [Giordano(2014)]. The method pro-90

posed in this paper is close to finite difference methods91

[Bilbao(2009), van den Doel and Ascher(2008)], even92

if it is used here in the time-harmonic context.93

This article goes in pair with an open-source94

Python 3 toolbox, Openwind [OpenWInD], that can95

be freely downloaded and used to undertake numerical96

experiments. After introducing the physical context97

in Section 2, the practical aspects of this numerical98

method (FEM) are first covered in Section 3, then99

the current reference method, the Transfer Matrix100

Method, is presented and its limits considering visco-101

thermal losses are exhibited in Section 4. A thorough102

validation is made in order to assess the precision103

and performance brought by this one-dimensional fi-104

nite element implementation in Section 5. The TMM105

can only approximate the solution when visco-thermal106

losses are considered for arbitrary shapes. We study107

the related error using the introduced FEM in Section108

6. Finally, computation times and several useful fea-109

tures of the FEM are presented (Section 6.3) before110

concluding.111

2 Physics-based model112

Consider an axisymmetric pipe occupying a domain113

Ω ⊂ R3 = (Ox,Oy,Oz) of slowly varying cross section114

S and rigid walls developing along the x axis, filled115

with air, see Figure 1.

x
y

z

O

S Ω

Figure 1: Definition of the space variables. S is the
slowly varying section of the axisymmetric pipe.

116

The acoustic pressure p(x, y, z, t) and the three-117

dimensional flow u(x, y, z, t) can be considered as118

the solution to Navier-Stokes three-dimensional119

equations which induce an undue computa-120

tional burden in the context where only the121

wave propagating phenomena are of interest.122

Following the simplifications of Kirchhoff’s the-123

ory regarding visco-thermal losses near the pipe124

walls [Kirchhoff(1868), Zwikker and Kosten(1949),125

Chaigne and Kergomard(2016)], the pressure can be126

considered as constant in the sections orthogonal127

to the x-axis, the orthogonal components of the128

Sound velocity: c = 331.45
√
T/T0 m s−1

Density: ρ = 1.2929 T0/T kg m−3

Viscosity: µ = 1.708 e− 5(1 + 0.0029 t) kg m−1s−1

Thermal conductivity: κ = 5.77 e− 3(1 + 0.0033 t) Cal/(ms
◦
C)

Spec. heat with constant p.: Cp = 240 Cal/(kg
◦
C)

Ratio of specific heats: γ = 1.402

Table 1: Numerical values
[Chaigne and Kergomard(2016)] of air constants
used in the model. t is the temperature in Celsius,
and T the absolute temperature with T0 = 273.15K.

three-dimensional flow can be neglected in the equa- 129

tions while the axial component can be considered 130

as axisymmetric with an analytic expression of its 131

radial dependency. Finally, we seek in the frequency 132

domain p̂(x, ω) the acoustic pressure1 and û(x, ω) the 133

volume flow, such that the one-dimensional interior 134

equations read, for all position x ∈ [0, L] and angular 135

frequency ω ∈ [ωmin, ωmax], 136


Zv(ω, x) û+

dp̂

dx
= 0, (1a)

Yt(ω, x) p̂+
dû

dx
= 0, (1b)

(2)


Zv(ω, x) =

jω ρ

S(x)
[1− J (kv(ω)R(x))]

−1
,

Yt(ω, x)=
jωS(x)

ρc2
[1 + (γ−1)J (kt(ω)R(x))] ,

kv(ω) =

√
jω
ρ

µ
, kt(ω) =

√
jωρ

Cp

κ
,

where R is the section radius, S = πR2 is the section
area, Table 1 describes the air constants, and we in-
troduce the function J of a complex variable, which
models the dissipative terms, as

J (z) =
2

z

J1(z)

J0(z)
, ∀ z ∈ C , (3)

where J0 and J1 are the Bessel functions of the first 137

kind. The subscripts v and t respectively stand for 138

viscous and thermal dissipative phenomena. 139

Furthermore, if the dissipative terms are neglected 140

(J function set to zero in the equations), the classical 141

horn equations describing plane wave propagation in 142

an axisymmetric lossless pipe can be retrieved from 143

an asymptotic analysis from Euler’s equations in a 144

pipe with a slowly varying section [Rienstra(2005)]. 145

For convenience, we will use the names lossy model 146

for system (1), and lossless model when J is set to 147

zero in system (1). 148

Two boundary conditions complete the
problem: at the bell x = L, we im-
pose a radiation impedance condition

1variables with a hat ( ·̂ ) denote the time-domain Fourier
transform of the unknown
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[Rabiner and Schafer(1978), Dalmont et al.(2001),
Chaigne and Kergomard(2016)]:

p̂(L, ω)

û(L, ω)
= ZR(ω) , (4)

and at the input of the pipe, we impose û(0, ω) =
λ(ω), where λ(ω) will be a source term for the sys-
tem. Since all the considered equations are linear, we
can consider without loss of generality λ(ω) ≡ 1. In
this article, we are interested in computing the input
impedance

Z(ω) :=
p̂(0, ω)

û(0, ω)
= p̂(0, ω) . (5)

Finally, the considered problem is the following: com-
pute

Z(ω) = p̂(0, ω), where (6)


Zv(ω, x) û+

dp̂

dx
= 0,

Yt(ω, x) p̂+
dû

dx
= 0,

∀ x ∈ [0, L] (7a)

û(0, ω) = 1, (7b)

p̂(L, ω)

û(L, ω)
= ZR(ω). (7c)

In the subsequent sections, we are interested in149

possible methods to solve system (7). We will first150

present the Finite Element Method and then the151

Transfer Matrix Method.152

3 Finite element method153

The finite element method (FEM) relies on a varia-154

tional formulation of the entire system in usual in-155

finite dimensional Sobolev spaces [Brezis(2011)], fol-156

lowed by the definition of finite dimensional spaces157

in which we seek numerically the solution. Recall158

that the Sobolev spaces L2 and H1 can be physi-159

cally interpreted as f ∈ L2([0, L]) if f is squared160

integrable on [0, L] and f ∈ H1([0, L]) if its gradi-161

ent is squared integrable. For first order formula-162

tions as the one of system (7) (flow / pressure), the163

theory [Courant and Hilbert(1965), Cohen (2000)]164

points towards the possible following framework.165

Find p̂h ∈ Vh ⊂ H1([0, L]), ûh ∈ Wh ⊂ L2([0, L]),166

such that for all qh ∈ Vh, wh ∈Wh,167



ˆ L

0

jω ρ

S
[1− J (kv(ω)R)]

−1
ûh wh

+

ˆ L

0

dp̂h
dx

wh = 0 (8a)

ˆ L

0

jωS

ρc2
[1+(γ − 1)J (kt(ω)R)] p̂h qh −

ˆ L

0

dqh
dx

ûh

−qh(0)λ(ω) +
1

ZR(ω)
p̂h(L)qh(L) = 0 (8b)

where by-parts integrations of Equations (7a) have 168

been performed, followed by the use of the bound- 169

ary conditions to weakly give a value to ûh(0) and 170

ûh(L). The complex conjugate of z is noted z. Note 171

that other choices of by-part integrations are possi- 172

ble, associated with other choices of functional spaces. 173

The type of boundary conditions and source regularity 174

usually guide this choice. In practice, we have chosen 175

to use standard Lagrange finite elements, hence to de- 176

fine the spaces Vh and Wh as follows. Other choices 177

are possible and impact the properties of the method. 178

The instrument is discretized into N elements {Kj}j , 179

delimited by N + 1 nodes that constitute the mesh. 180

On each element Kj we consider r+1 interior degrees 181

of freedom called {ξj,p}1≤p≤r+1. 182

N finite elements

0 L
r+1 degrees of freedom

ϕ1 ϕ2 ϕ3
1

ϕ(x) ϕ4 ϕ5

ξ1,1 ξ1,2 ξ1,3 ξ2,1 ξ2,2 ξ2,3

0 L

ψ1 ψ2
1

ϕ(x) ψ5 ψ6

ξ1,1 ξ1,2 ξ1,3 ξ2,1 ξ2,2 ξ2,3

ψ3 ψ4

Figure 2: Basis functions with respect to x on a 2-
elements mesh of [0, L]. Top : second order basis
function {ϕi}1≤i≤5 of Vh. Bottom : second order basis
function {ψi}1≤i≤6) of Wh. (colors online)

The finite dimensional spaces Vh and Wh are 183

spanned by the nodal bases {ϕi}1≤i≤NH1 and 184

{ψj}1≤j≤NL2 of piecewise polynomial functions of de- 185

gree r (see an example of order 2 in Figure 2), which 186

defines the order of the FEM. Consequently, the nu- 187

merical solutions representing the pressure p̂h and 188

volume flow ûh are linear combinations of the basis 189

functions {ϕi}1≤i≤NH1 and {ψj}1≤j≤NL2 respectively. 190

In some communities, the basis functions are called 191

shape functions. They are interpolation Lagrange 192

polynomials (drawn Figure 2) associated to the con- 193

catenation of all the degrees of freedom of all the el- 194

ements, where the nodes separating two elements are 195

duplicated for Wh but not for Vh. Consequently, the 196

basis functions of Vh are continuous while the ones 197

of Wh present a discontinuity at the edges of the 198

elements. This follows the conformal nature of the 199

approximation, namely Vh ⊂ H1([0, L]) and Wh ⊂ 200

L2([0, L]). Moreover, NH1 < NL2 as soon as the mesh 201

is composed of more than two elements. Finally, the 202

integral terms in Equations (8) are evaluated through 203

a quadrature procedure [Quarteroni et al.(2007)]. Al- 204

though a high order quadrature formula could be em- 205

ployed to ensure exact integration, we have chosen to 206

follow the condensation procedure (also named mass- 207
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lumping procedure) of spectral high order finite ele-208

ments [Cohen(2004)]2. This technique is divided into209

two joint steps: using the same points for the quadra-210

ture and the interpolation which leads to a diagonal211

mass matrix (condensation), and choosing as inter-212

polation points the Gauss-Lobatto points which pre-213

vents accuracy loss of the condensation method and214

improves the global matrix conditioning. Approxi-215

mate integrals that come from this procedure will be216

denoted
ffl

.217

Since system (8) stands for every wh ∈ Wh and
qh ∈ Vh, it is equivalent to state that it stands for
every basis vector of Wh and Vh. Besides, we abu-
sively still denote ûh (resp. p̂h) for the coordinates
of ûh (resp. p̂h) in the basis {ϕi}1≤i≤NH1 (resp.
{ψj}1≤j≤NL2 ). Consequently, the discrete formula-
tion equivalently takes the matrix form

jωML2

h ûh + jω NL2

h (ω) ûh −Bh p̂h = 0 (9a)

jωMH1

h p̂h + jω NH1

h (ω) p̂h +
1

ZR(ω)
Σh p̂h

+B∗
h ûh − Eh = 0 (9b)

where ∗ designates the adjoint and(
ML2

h

)
i,j

=

 L

0

ρ

S
ψi ψj ,

(
MH1

h

)
i,j

=

 L

0

S

ρc2
ϕi ϕj ,(

NL2

h

)
i,j

(ω) =

 L

0

ρ

S

J (kv(ω)R)

1− J (kv(ω)R)
ψi ψj ,(

NH1

h

)
i,j

(ω) =

 L

0

S

ρc2
(γ − 1)J (kt(ω)R)ϕi ϕj ,

(Bh)i,j = −
 L

0

ψi
dϕj

dx
, (Eh)i = ϕi(0),

(Σh)i,j = ϕi(L)ϕj(L)

Notice that ML2

h , MH1

h , NL2

h (ω), NH1

h (ω) and Σh

are diagonal matrices, Bh is block diagonal where the
blocks are full and of size r× r+ 1 and Eh is a vector
with only one non zero entry. This discrete formula-
tion defines the following linear system on the global
unknown Uh:

Ah(ω)Uh(ω) = Lh, Ah(ω) =

(
A11(ω) A12(ω)
A21(ω) A22(ω)

)
,

Lh =

(
0
Eh

)
, Uh(ω) =

(
ûh
p̂h

)
(ω) (10)

A11(ω) = jωML2

h + jω NL2

h (ω)

A12(ω) = −Bh, A21(ω) = B∗
h

A22(ω) = jωMH1

h + jω NH1

h (ω) +
1

ZR(ω)
Σh

Notice that the matrix Ah is sparse and can there-
fore be inverted by using efficient sparse routines

2section 11.1.1 pp. 169 to 177

[scipySparse]3. Once this system is numerically
solved, for a discrete set of values {ωi}1≤i≤Nω ∈
[ωmin, ωmax], the input impedance is

∀ 1 ≤ i ≤ Nω, ZFEM(ωi) = L∗
h Uh(ωi) , (11)

which is the (NL2 +1)th term of the vector Uh(ωi). 218

It is possible to diminish the computational burden 219

by performing some pre-computations based on the 220

pipe geometry and propagation hypotheses, and by 221

taking advantage of the geometrical and arithmetical 222

structure of the matrix Ah and of the required output 223

[Amestoy et al.(2000)], but this is out of the scope of 224

the current article. 225

Finally, for a given frequency, the NL2 first terms 226

of Uh give an approximation of the velocity at every 227

degree of freedom along the bore, while the NH1 last 228

terms give an approximation of the pressure. 229

The FEM presented in this paper is implemented 230

in OpenWind [OpenWInD], an open source (GPLv3) 231

Python 3 toolbox. 232

4 Transfer matrix method 233

The transfer matrix method (TMM) consists in 234

writing relations between output and input acous- 235

tic variables of simple geometries (cylinders, cones, 236

Bessel and exponential bores...) from the use 237

of the propagation equations [Caussé et al.(1984), 238

Plitnik and Strong(1979)]. Consequently, given a ra- 239

diation impedance ZR(ω) and discretizing the bore 240

profile in a series of Np parts, it is possible to compute 241

the instrument’s input impedance. Let {xi}0≤i≤Np
be 242

the list of positions on the bore’s axis defining all the 243

parts (with x0 = 0 and xNp
= L). We also define 244

p̂i(ω) and ûi(ω) as approximations of the pressure and 245

the volume flow calculated by the TMM at the posi- 246

tions xi. When the TMM is exact, p̂i(ω) = p̂(xi, ω) 247

and ûi(ω) = û(xi, ω). 248

Formally, the relation between the input and the 249

output of one part can be expressed as a 2×2 matrix 250

Ti+1(ω): 251

(
p̂i(ω)
ûi(ω)

)
=

(
ai+1(ω) bi+1(ω)
ci+1(ω) di+1(ω)

)(
p̂i+1(ω)
ûi+1(ω)

)
(12)

= Ti+1

(
p̂i+1(ω)
ûi+1(ω)

)
. (13)

We then deduce the relation between the input and
the output of the pipe:

ζ =

(
p̂0(ω)/ûL(ω)
û0(ω)/ûL(ω)

)
=

Np∏
i=1

Ti(ω)

(
ZR(ω)

1

)
. (14)

3more precisely, scipy is linked to a BLAS (Basic Linear
Algebra Subprogram) which depends on your operating system
and what has been installed on the computer. All the results of
this article have been computed using the BLAS/LAPACK in-
tel MKL 2018 and the linear system resolutions use a SuperLU
procedure.
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where ûL(ω) is the volume flow at the pipe end, and252

finally ZTMM =
ζ(1)

ζ(2)
. The global transfer matrix is253

defined as the product of all the elementary matri-254

ces Ti. An implicit transmission condition is there-255

fore assumed, which is the continuity of the variables256

between all parts. In practice, the computation is257

done only for a discrete set of pulsations {ωj}1≤j≤Nω
.258

In the sequel, we will only consider the TMM for259

cylinders and cones. Transfert matrices for other ge-260

ometries are available in the literature [Braden(2007),261

Chaigne and Kergomard(2016), Helie(2013)].262

For the lossless propagation case, the equations263

can be solved analytically for cones and cylinders264

and therefore the TMM provides the exact input265

impedance. In the presence of viscothermal losses,266

the dissipation terms depend non linearly on the bore267

radius, see Equation (2). It turns out that exact ma-268

trices can only be derived for the cylinder and not for269

more complex parts for which the radius depends on270

the space variable (p̂i(ω) 6= p̂(xi, ω)). A first empiri-271

cal approach handles this difficulty for conical parts272

by approximating them as a succession of cylinders of273

increasing or decreasing radii [Caussé et al.(1984)].274

A second empirical approach proposes to discretize275

each conical part in Nsub smaller cone subdivisions,276

and to use on each subdivision the transfer matrix277

derived for the cone considering lossless propa-278

gation, replacing some parameters by their lossy279

counterparts [Chabassier and Tournemenne(2019)]280

evaluated at a chosen intermediate radius281

R� [Mapes-Riordan(1993), Braden(2007)]. For282

a bore initially made of Np conical parts, the total283

number of actual transfer matrices to compute would284

be NTMM = Np ×Nsub.285

Since the viscothermal losses depend non-linearly286

on the radius, no optimal value for R� can be im-287

mediately derived. Possible choices are the average288

radius R� = (Ri + Ri+1)/2 [Mapes-Riordan(1993)]289

(where Ri and Ri+1 are the input and output radii290

of the cone subdivision), or any other weighted aver-291

age [Chaigne and Kergomard(2016), Helie(2013)]. In292

this article, we choose R� = (2 min(Ri, Ri+1) +293

max(Ri, Ri+1))/3, which seems to be used in some294

existing implementations of the TMM.295

We show (see [Chabassier and Tournemenne(2019)]
for more details) that using the TMM with the ap-
proximate matrix obtained with this strategy corre-
sponds to actually solving analytically, for the ap-
proximated solutions ǔ and p̌, the following system of
equations:

ZTMM(ω) = p̌(0, ω), where ∀ i ∈ [1, NTMM], (15)




Zi
vǔ+

dp̌

dx
= 0,

Y i
t p̌+

dǔ

dx
= 0,

∀ x ∈ [xi, xi+1] (16a)

Zi
v =

jω ρ

S

[
1− J (kv(ω)R�

i )
]−1

, (16b)

Y i
t =

jωS

ρc2
[
1 + (γ − 1)J (kt(ω)R�

i )
]
, (16c)

p̌(xi−) = p̌(xi+), ǔ(xi−) = ǔ(xi+), (16d)

R�
i = (2 min(R(xi), R(xi+1)) +

max(R(xi), R(xi+1)))/3, (16e)

ǔ(0, ω) = 1, (16f)

p̌(L, ω)

ǔ(L, ω)
= ZR(ω). (16g)

This problem is different from the continuous prob- 296

lem (7) solved with the FEM. The difference lies in 297

the approximation R� inside the function J for every 298

interval [xi, xi+1] and amounts to approximating the 299

original equation coefficients with discontinuous ones. 300

Finally, we propose a formulation unifying the
transfer matrices of the cylinder and the cone, which
coincides in either cases to the ones of the liter-
ature [Mapes-Riordan(1993)], under visco-thermal
losses. It reads:

ai+1(ω) = a, bi+1(ω) = b, ci+1(ω) = c, di+1(ω) = d,

where

(17)



a =
Ri+1

Ri
cosh Γ`− β

Γ
sinh Γ`

b =
Ri

Ri+1
Zc sinh Γ`

c =
1

Zc

[(
Ri+1

Ri
− β2

Γ2

)
sinh Γ`+

β2`

Γ
cosh Γ`

]
d =

Ri

Ri+1

(
cosh Γ`+

β

Γ
sinh Γ`

)
where

Γ≡Γ(ω,R�)=
jω

c

√
1+ (γ− 1)J (kt(ω)R�

i )

1− J (kv(ω)R�
i )

,

Zc≡Zc(ω,R
�)=

ρc

S(xi)

√√√√[1+(γ− 1)J (kt(ω)R�
i )
]−1

1− J (kv(ω)R�
i )

and

β =
Ri+1 −Ri

`Ri
, (18)

where Ri and Ri+1 are respectively the input and out- 301

put radii of the interval, ` is the axial length of the 302

interval, and R� the previously defined quantity. 303

The transfer matrices for cylinders and cones in the 304

lossless case can be similarly unified, it only requires 305

to replace Γ by jω/c and Zc by ρc/S. 306

The TMM presented in this paper is implemented 307

in OpenWind [OpenWInD]. 308
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5 Validation309

Unless otherwise stated, all input impedances pre-
sented hereafter are numerically computed from 20
to 2000 Hz with a 1Hz step, the temperature is set
to 25 ◦C, and we consider a terminal impedance
that models radiation from an infinite plane baf-
fle [Rabiner and Schafer(1978)]:

ZR(ω) =
ρc

S(L)

jω

α+ jωβ
, (19)

where α = 3cπ/(8R) and β = 9π2/128. Other flanges310

can be modelled with this impedance form, by ad-311

justing consequently the coefficients α and β, with312

a corresponding frequency validity range. Any other313

choice of radiation impedance can be done, including314

experimental ones, provided that the associated sys-315

tem of equations is well posed, meaning that its real316

part must be non-negative [Chandler-Wilde(1997)].317

The discussion about radiation impedances is out of318

the scope of this paper, but it is important to note319

that the following conclusions regarding convergence320

rates and accuracy do not depend on this choice.321

In the following, the FEM meshes are constructed322

as follows. A target element size (TES) is chosen by323

the user. The instrument being described by a series324

of radii at different axial points, some of the instru-325

ment parts might be shorter than the TES, and some326

might be longer. The instrument parts longer than327

the TES are equally divided to only obtain elements328

smaller or equal to the TES. The instrument parts329

shorter than the TES are described by only one el-330

ement having the same size than the part. For re-331

alistic instruments, any TES choice will produce a332

non-uniform mesh since the instrument parts are not333

necessarily commensurate. The ratio τ between the334

largest and smallest elements in a mesh is an indica-335

tor of this uniformity, and is equal to 1 for a uniform336

mesh.337

Up to 8 geometries are studied in the following.338

One 20 cm cylinder with 5 mm radius (roughly cor-339

responding to a trumpet leadpipe) is used to assess340

an error estimator for the lossy model. We use 5341

different cones and one arbitrary simple discontinu-342

ous geometry to help analyze the TMM error for the343

lossy model. These geometries share their dimensions344

with existing instruments or instruments parts. They345

are intentionnally simple and have been selected in346

order be highly sensible to visco-thermal losses (small347

radius or fast slope). Besides, a trumpet-like bore348

based on measurements of a real commercial trumpet349

is used to provide a realistic study of the lossless and350

lossy models. Its bore is made of 9 cones to describe351

the mouthpiece, 4 cones for the leadpipe, 1 central352

cylinder and 20 cones for the bell (33 cones in to-353

tal). Apart from the cylinder, the 7 other geometries354

are described in Figure 3. Notice that the 3 cones355

corresponding to the mouthpiece cup, backbore, and356

the trumpet leadpipe parts would normally be inside 357

the instrument and yet we consider here their input 358

impedance with open air radiation. 359

Notice that the relative errors that will be consid- 360

ered in the following of this paper are consequent to 361

the discretization of the equations, and must be dis- 362

tinguished from the model error that would induce 363

a discrepancy between the simulations and physical 364

experiments. Quantifying this discretization error al- 365

lows to correctly interpret the results of simulations. 366

All the results are obtained with OpenWind 367

[OpenWInD]. 368

5.1 Case without dissipation 369

The TMM is numerically exact for the lossless model,
and can therefore be taken as a reference in this case.
Consequently, in order to assess the numerical quality
of the FEM, we compute the relative error of the FEM
solution to the reference solution obtained with the
TMM, ETMM, in the lossless case, defined as:

ETMM(i) =
‖Zi FEM − ZTMM‖

‖ZTMM‖
, (20)

where Zi FEM is the impedance computed using the 370

FEM at order i, and ZTMM the impedance computed 371

using the TMM, and ‖·‖ denotes the discrete `2 norm 372

of a vector over all the considered frequencies. 373

The upper part of Figure 4 shows the logarithm 374

of ETMM(i) with respect to the order i of the FEM 375

for the specific case of the trumpet bore displayed in 376

Figure 3. 377

The mesh is obtained by choosing a TES equal to 378

3.4 cm , which gives N = 72 elements, with a ratio 379

τ = 17. We observe that the FEM provides a solu- 380

tion that is closer and closer to ZTMM as the order 381

increases. After order 10 (which represents a total of 382

649 degrees of freedom for the H1 variable, 1369 de- 383

grees of freedom in total), the impedance relative `2 384

error does not diminish anymore and is close to 2.6e- 385

12, which is dominated by roundup errors in double 386

precision as expected. In the sequel we will call this a 387

“converged solution”. The linear convergence in log- 388

arithmic scale agrees with the finite elements theory 389

which predicts an exponential order (spectral) con- 390

vergence. The lower part of Figure 4 shows the log- 391

arithm of ETMM (i) with respect to the logarithm of 392

the target element size (TES) of the mesh, for the dif- 393

ferent FEM orders 1 to 6. Since the trumpet bore is 394

composed of very large and very small parts, the ob- 395

served curves are not yet exhibiting asymptotic rates 396

of convergence (we would need much smaller TES in 397

this case). However, we observe that for a given TES 398

(and therefore mesh), increasing the order of the FEM 399

always diminishes the relative `2 error on the input 400

impedance, achieving a precision that is difficult to 401

reach by refining the mesh at a given order. 402
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Figure 3: The seven studied bores. Top left : trumpet-like bore. Top right : simple convergent cone of general
dimensions similar to a mouthpiece cup. Bottom left : two cones of 1m representative of conical instruments.
Bottom right : two cones being qualitatively similar to a mouthpiece backbore and a trumpet leadpipe part,
and one arbitrary geometry made of two cones, one divergent, the other convergent, and a clear discontinuity
between them. The circles represent the extremities of each part. (colors online)

5.2 Case with dissipation403

Regarding the model with viscothermal losses (lossy
model), the TMM is exact for cylinders only. It will
thus not be possible to use ETMM to assess FEM con-
vergence towards the exact solution for geometries of
arbitrary shapes. Instead, we compute the relative `2

error between two finite element computations on the
same mesh but consecutive orders:

Eorder(i) =
‖Zi+1 FEM − Zi FEM‖

‖Zi FEM‖
, (21)

which is a heuristic and customary estimator when404

no exact solution is available (attributed to C.405

Runge, see [Repin(2008)]). Notice that it is not a406

mathematical a posteriori estimator [Babuska(1981),407

Ainsworth(1997)] but must be considered only as an408

illustration.409

order 1 2 3 4 5+
frequential
deviation (cents)

236 26 0.3 0.01 <1e-4

amplitude
deviation (dB)

15 1.8 0.02 0.001 <1e-5

Table 2: Frequential position and amplitude devia-
tions of the second impedance peak of the 20cm cylin-
der (radius 5mm) using the lossy model. The refer-
ence is computed using the TMM. A visual represen-
tation of this second peak is shown Figure6.

The first considered case is a cylinder 20 cm long410

with a 5 mm radius, which could be compared quali-411

tatively to a trumpet leadpipe in terms of dimensions.412

In Figure 5, we consider a mesh of N = 3 elements 413

and we represent both the ETMM and the Eorder rel- 414

ative `2 error estimators, since ETMM is relevant in 415

this case (it measures the distance to an exact solu- 416

tion). The two error estimators exhibit a very similar 417

behavior which illustrates the fact that they are both 418

relevant to assess the convergence of the FEM. In this 419

case, the FEM provides a converged solution at order 420

9. The fact that Eorder tends to machine precision il- 421

lustrates the usual finite elements convergence theory 422

[Fortin (1977), Cohen (2000)] which theoretically en- 423

sures that the obtained numerical solution is actually 424

close to the exact impedance of the considered instru- 425

ment (as opposed to a converged but false numerical 426

solution) [Dauge et al.(2005)]. 427

Figure 6 shows the modulus of the input impedance 428

computation for the same cylinder with respect to the 429

frequency, for different FEM orders. Table 2 gives 430

the frequential and amplitude deviations of the second 431

peak. The difference between the curves is visible for 432

all orders, which is consistent with the fact that the 433

solution is not yet converged. At a given order, the 434

error increases with the frequency, which is known as 435

the “pollution effect” [Gerdes and Ihlenburg(1999)]. 436

When the order increases, the solution becomes 437

valid in a wider frequency range. Two main effects 438

are to be noted in the context of musical acous- 439

tics: the peaks amplitudes and frequencies can be 440

wrong, the latter being due to numerical dispersion 441

[Ihlenburg and Babuška(1995)]. Increasing the num- 442

ber of elements and/or the order allow to reduce these 443

effects down to machine precision. In this case, at low 444
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Figure 4: Relative `2 error between the input
impedance obtained with the FEM and the TMM for
the trumpet under lossless conditions. Top: the finite
elements order varies on a given mesh, Bottom: the
target element size (TES) varies for different FEM
orders. (colors online)
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Figure 5: Comparison between Eorder and ETMM for a
20 cm cylinder of radius 5 mm using the lossy model.
The FEM mesh is uniform with 3 elements.

orders of discretization, erroneous conclusions can be445

drawn if the user does not attribute the dispersion to446

the numerical approximation but to the model.447

Notice finally that finite differences448

[Bilbao and Chick(2013)] can be seen, at least449

locally, as first order finite elements. The analyses of450

Figures 4 and 6 illustrate the fact that using a first451

order approximation can be a source of inaccuracy in452

the context of musical acoustics.453

Figure 7 shows the logarithm of the consecutive rel-454

ative `2 error Eorder with respect to the FEM order,455

considering the geometries of Figure 3, in the lossy456

case. The number of elements is indicated in the leg-457

end. An exponential order convergence is still ob-458

served in the presence of dissipation which is in agree-459

ment with the FEM theory since only the coefficients460

have changed. Depending on the case, the solution461

seems to be converged at an order ranging between 5462

and 10, which is related to the properties of the cho-463
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2
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|

order 1

order 2

order 3

order 4

Figure 6: Modulus of the input impedance of a 20
cm cylinder of radius 5 mm computed by the FEM at
different orders. (colors online)

sen mesh and to mathematical constants depending 464

on the exact solution. 465
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Figure 7: Consecutive relative `2 error between the
input impedances obtained with the FEM for the lossy
model using the bores of Figure 3 with respect to the
FEM order. The number of elements of each mesh is
given in the legend for each geometry. (colors online,
matching with Figure 3)

6 Results 466

6.1 Study of the TMM error for arbi- 467

trary shapes considering losses 468

Given the results of the previous sections, a converged 469

FEM solution can therefore be considered as the ref- 470

erence numerical solution for the lossy model, on ge- 471

ometries for which no exact solution is available. As 472

said earlier, the TMM used on the lossy model is not 473

exact for bores of arbitrary shape, and follows an em- 474

pirical approach to compute input impedances, see 475

section 4. In this study, we investigate the second 476

empirical approach, subdividing every conical part in 477

Nsub equal segments and using for each subdivision 478

the formula (17), which amounts to solving the ap- 479

proximate Equations (16). 480

It is possible to study the error made by the TMM 481
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approximation, by computing the relative `2 error482

with the converged FEM input impedance:483

Econv FEM(j) =
‖Zj TMM − Zconv FEM‖

‖Zconv FEM‖
, (22)

where Zj TMM is the input impedance computed us-484

ing the TMM with j subdivisions for each instrument485

part, and Zconv FEM is the converged impedance ob-486

tained by the FEM.487

Since both methods solve different systems of equa-488

tions (namely, Equations (7) for the FEM and Equa-489

tions (16) for the TMM), the error between their so-490

lutions will be related to the difference between their491

equations [Chabassier and Tournemenne(2019)]. As j492

increases, the TMM equations tend to the FEM equa-493

tions and thus we expect both solutions to converge.494
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Figure 8: Relative `2 error between TMM solution
and the converged FEM solution for the bores of Fig-
ure 3, w.r.t. the smallest subdivision length used for
the TMM computation. (colors online, matching with
Figure 3)

Figure 8 shows the logarithm of Econv FEM with495

respect to the logarithm of the smallest subdivision496

length ∆xj used to compute Zj TMM, for the differ-497

ent bores displayed in Figure 3. The relative error is498

computed on a frequency range of [20, 2000] Hz with a499

1Hz step, but the obtained results are similar when a500

different frequency range is considered. A first obser-501

vation is that all curves are decreasing at rate close to502

1 asymptotically (error divided by 10 when the subdi-503

visions length is divided by 10). For the first conical504

instrument, the mouthpiece backbore and more ex-505

tensively, for the cup-like bore, the curves show a dip506

for a specific subdivision length value. This can hap-507

pen when considering few subdivisions for each cone508

and disappears asymptotically, and can be interpreted509

as fortuitous values of R� for the cones subdivisions.510

More quantitatively, the error Econv FEM illustrates511

the difference between the discretized TMM approach512

problem (16) and the original system (7). Because the513

convergence is slow (order 1 w.r.t. the subdivision514

length), the number of TMM subdivisions needed to515

obtain a solution that has converged up to machine516

precision is very large and induces a very heavy com-517

putational cost.518
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Figure 9: Impedance comparison between the con-
verged FEM and the TMM method using different
subdivision lengths of the Conical instrument 1. (col-
ors online)

Figure 9 shows the input impedance of the instru- 519

ment Conical inst. 1 on the frequency range [0, 2] 520

kHz and [1120, 1150] Hz (close to the 7th impedance 521

peak). On this example, the amplitude and frequency 522

position of the impedance peaks are misjudged by the 523

TMM when the number of subdivisions is too low. 524

For example, the height of the 7th peak of this in- 525

strument is 6.9% too low (3.56e8 against 3.32e8) when 526

considering a subdivision length of 0.17 m (6 subdivi- 527

sions), and its frequency position is 1.37 cents too low 528

(1136Hz against 1135Hz). In the case of the cup-like 529

bore, this frequency shift is even higher (4.99 cents 530

for the first peak around 2000Hz with a subdivision 531

length of 0.01 m (1 subdivision) for the TMM). 532

6.2 Computation time and features 533

comparison of the two approaches 534

Computation time In the previous paragraphs, 535

we have seen that both the FEM and the TMM are 536

relevant to compute the input impedance of a given in- 537

strument as defined in Equations (7). In order to com- 538

plete the methods’ performance analysis, it is neces- 539

sary to assess and compare their computational costs. 540

Fast input impedance computation is especially use- 541

ful when considering optimisation applications where 542

a large number of input impedances must be com- 543

puted to reach optimal designs. Recall that the FEM 544

computation requires the inversion of the sparse lin- 545

ear system (10) while the TMM computation requires 546



Tournemenne & Chabassier, p. 10

the evaluation of the matrices product (14), both for547

a discrete set of pulsations {ωi}1≤i≤Nω
. In the case548

of the FEM, most of the computation time is spent549

in computing the finite element matrices (10%), in-550

verting them (39%), and evaluating the dissipative551

terms if any (48%) (these percentages depend some-552

how on the number of degrees of freedom). The ma-553

trices to invert are sparse and the overall conditioning554

of the matrices is good thanks to the use of spectral555

high order finite elements. A fair comparison can556

only be performed for numerical solutions that pro-557

vide the same precision with respect to the exact so-558

lution. Since the FEM relies on the choice of both559

a mesh and an order, the same precision can be ob-560

tained with several situations that do not necessarily561

induce the same computational cost. In the sequel,562

the given time is always the smallest manually found563

computational time.564

Firstly, for the cases where the TMM are exact565

(lossless case, lossy cylinder), the TMM computation566

is very competitive and provides the exact solution567

with only roundup errors. On the contrary, the FEM568

needs to be converged in order to provide a solution569

with a similar precision, and this induces an extra570

computational cost (about 1883 times more for the571

lossless trumpet and 194 times more for the lossy572

cylinder).573

In the presence of viscothermal losses and arbitrary574

shapes, the TMM is not exact anymore and uses a dis-575

crete and empirical approach to compute the input576

impedance. We display in Figure 10 the computation577

times with respect to the relative `2 error to the con-578

verged solution, for the realistic trumpet-like bore4,579

for several TMM subdivision lengths (from ∆x = 2e-580

3m to 1.3e-5m) and for the FEM with 35 elements at581

order 4.582

Finally, Another FEM strategy called “adaptative”583

is also considered: it adapts the order of each mesh el-584

ement to its size. This strategy avoids introducing too585

many degrees of freedom in small elements, improving586

the computation time without diminishing the global587

`2 error. In the specific case of the trumpet-like bore588

with a TES (Target Element Size) producing 35 ele-589

ments, the first parts describing the mouthpiece are590

few millimeters long which is shorter than the TES.591

Consequently, the 4 interpolation points are unneces-592

sarily cramped up on the only element of each of these593

parts. Therefore, a manual definition of the best order594

for each element, aided by the expected local shortest595

wavelength, is undertaken in order to obtain a good596

compromise between the number of degrees of free-597

dom and the precision. In the example of Figure 10,598

the adaptative FEM improves the computation time599

by 11.1% compared with the usual FEM, and both600

computations lead to a relative `2 error of 4.1× 10−4.601

The fastest TMM setting (∆x = 2e-3m), provides a602

4Computations run on a 3.4GHz Intel Core i7-2600 with 16
GB of RAM

relative `2 error equal to 1.1% and computes the input 603

impedance in 0.225 seconds, which is 11.2 times faster 604

than the adaptative FEM (2.5 seconds). The most 605

precise TMM setting has a precision similar to the 606

FEM (2.2 × 10−4), but the computation time is 11.9 607

times higher than the adaptative FEM (30.1s). Other 608

orders (2, 3 and 5) have been considered for the mesh 609

of 35 elements. Corresponding results are listed in 610

Table 3 and the order 3 is displayed on Figure 10. All 611

the computation times are similar (between 2 and 3.2 612

seconds) while the errors greatly improve (from 8.8e-2 613

to 2.5e-5). This shows the overall numerical perfor- 614

mance of the FEM in real life situations, which can 615

target a specific precision while maintaining a com- 616

petitive computation time. 617

10−3 10−2

100

101

‖Z−Zconv FEM‖
‖Zconv FEM‖

TMM
FEM N=35, r=3
FEM N=35, r=4

adaptative FEM

Figure 10: CPU time of the trumpet impedance com-
putation w.r.t impedance relative `2 error. Compari-
son between the TMM and FEM methods.

elements # 35 35 35 35
order 2 3 4 5

degrees of
freedom

105 140 175 210

CPU time (s) 2 2.4 2.8 3.2
Econv FEM 8.8e-2 6.3e-3 4.1e-4 2.5e-5

Table 3: Different computation times and Econv FEM

considering different orders for the trumpet
impedance using a 35 elements discretization.

Acoustic variables One immediate feature per- 618

mitted by the FEM is the availability of the pressure 619

and volume flow spectra along the entire bore axis, 620

see Figure 11, which is directly obtained by consider- 621

ing all the vector Uh of system (10) (and not only the 622

term corresponding to the input pressure). This out- 623

put therefore comes at no extra computational cost 624

compared to the impedance computation. Interpola- 625

tion on arbitrary points is also possible without in- 626

creasing the numerical error. 627
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It could also be possible to reconstruct the pressure628

and volume flow using the TMM, but it would induce629

extra computational cost due to either over sampling630

of the bore profile (storing intermediate results of ma-631

trix products) or value interpolation (for which an ar-632

bitrary interpolation rule must be chosen and could633

potentially deteriorate the numerical result).

Figure 11: Evolution of the pressure modulus in log-
arithmic scale along the bore of the lossy trumpet
according to frequency. The border at the beginning
of the instrument (bore axis x = 0) displays the input
impedance. (colors online)

634

In the case of a wind instrument, it helps to under-635

stand where the nodes and antinodes of the waves are636

located, which may help instrument makers better vi-637

sualize the instrument’s functioning or even position638

the toneholes5.639

Extended physical situations One major advan-640

tage of using FEM over TMM is the possibility to641

easily solve equations with no available analytical so-642

lution while maintaining an arbitrary precision. In-643

deed, when more complex cases than lossless acous-644

tic propagation are considered, it may be impossi-645

ble to find analytical solutions, requiring the TMM646

to consider some approximations if possible (visco-647

thermal losses, continuously non-constant physical co-648

efficients). This feature could potentially give access649

to instruments impedances in very interesting phys-650

ical situations. For instance, it is theoretically and651

technically straightforward to consider non-constant652

physical coefficients, as in the case where the temper-653

ature varies inside the pipe. Indeed, this only prompts654

different values for the matrices ML2

h , MH1

h , NL2

h (ω)655

and NH1

h (ω). Using exactly the same quadrature for-656

mulae, this only results in a different integrand taking657

into account the temperature value throughout the658

bore axis. The TMM can achieve a similar goal with659

less flexibility and less control on the discretisation660

error, refining the bore parts definition and consider-661

ing a different constant temperature on each refined662

parts.663

5private discussion with the instrument maker Augustin
Humeau

Table 4 shows the frequential position and ampli- 664

tude deviations of the 9 first impedance peaks of 665

the trumpet between a linear temperature gradient 666

[Gilbert et al.(2006)] between 37 and 21 ◦C, and an 667

averaged temperature of 29 ◦C inside the bore. There 668

is a 7% difference between the two moduli of the 669

impedances, showing the importance of the temper- 670

ature gradient for impedance calculation. More pre- 671

cisely, the frequential deviation varies between 0.3 and 672

4.2 cents (1.9 cents in average), and the peaks ampli- 673

tude varies between 0.1 and 0.3dB. 674

peak # 1 2 3 4 5 6 7 8 9
frequential
deviation (cents)

4.2 1.5 1.4 1.7 2.6 1.5 1.4 2.1 0.3

amplitude
deviation (dB)

0.1 0.2 0.2 0.3 0.3 0.2 0.2 0.2 0.1

Table 4: Frequential position and amplitude devia-
tions between the two temperature profiles along the
bore of the trumped for the lossy model, for the 9 first
impedance peaks.

Other possibilities include the accurate considera- 675

tion of arbitrary bores (Bessel, exponential, polynomi- 676

als, splines, . . . ), the possible integration of new terms 677

in the equations or the coupling with other equations 678

modelling different physical phenomena (pipes junc- 679

tions, or excitators as lips, reeds, flue, . . . ). 680

7 Conclusion and prospects 681

The precision and performances of FEM and TMM 682

have been assessed, based on quantitative compari- 683

son, as well as the exhibition of the actual equation 684

solved by the TMM. In realistic cases as a trumpet 685

with losses, the FEM allows to compute the same 686

numerical solution as the TMM with a limited com- 687

putational cost. It also allows to compute unusual 688

physical situations as non-constant coefficients along 689

the bore. Moreover, the computation gives a direct 690

access to the acoustic variables inside the pipe for no 691

extra computational cost or over-sampling. All the 692

results of this article have been computed and can 693

be run again using the open-source python toolbox 694

OpenWind [OpenWInD]. Two direct extensions can 695

follow this work: the implementation of toneholes in 696

the model in order to model the input impedance of 697

woodwind instruments, and the sound synthesis based 698

on the same finite element method in space and finite 699

difference in time. Notice that the presence of visco- 700

thermal terms induces a major theoretical difficulty in 701

the time domain [Berjamin et al.(2017)]. Finally this 702

finite element framework is an efficient basis aiming at 703

developing an inversion algorithm based on the full- 704

waveform inversion [Virieux and Operto(2009)]. This 705

technique can be used to optimize the instrument’s 706

geometry based on criteria derived from the input 707

impedance, and relies strongly on the additional out- 708
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puts of the FEM impedance computation which are709

the pressure and flow fields inside the instrument.710
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[Caussé et al.(1984)] Caussé, R., Kergomard, J., and 765

Lurton, X. (1984). “Input impedance of brass 766

musical instruments—comparison between ex- 767

periment and numerical models,” J. Acoust. Soc. 768

Am. 75(1), 241–254. 769

[Chabassier and Tournemenne(2019)] Chabassier, J., 770

and Tournemenne, R. (2019). “About the trans- 771

fert matrix method in the context of acoustical 772

wave propagation in wind instruments,” INRIA 773

Research Report 9254. 774

[Chaigne and Kergomard(2016)] Chaigne, A., and 775

Kergomard, J. (2016). Modern Acoustics and 776

Signal Processing “Acoustics of Musical Instru- 777

ments:,” (Springer New York). 778

[Chandler-Wilde(1997)] Chandler-Wilde, S. N. 779

(1997). “The impedance boundary value prob- 780

lem for the Helmholtz equation in a half-plane,” 781

Mathematical Methods in the Applied Sciences 782

20, 813–840. 783

[Cohen(2004)] Cohen, G. (2004). “Higher Order Nu- 784

merical Methods for Transient Wave Equations,” 785

(Springer, Berlin, Heidelberg). 786

[Cohen (2000)] Cohen, G. and Fauqueux, S. (2000). 787

“Mixed finite elements with mass-lumping for the 788

transient wave equation,” Journal of Computa- 789

tional Acoustics 8 (1), 171–188. 790

[Courant and Hilbert(1965)] Courant, R., and 791

Hilbert, D. (1965). “Methods of mathemat- 792

ical physics. partial differential equations,” 793

Interscience 2. 794

[Dalmont et al.(2001)] Dalmont, J.-P., Nederveen, 795

C. J., and Joly, N. (2001). “Radiation impedance 796

of tubes with different flanges: Numerical and ex- 797

perimental investigations,” Journal of Sound and 798

Vibration 244(3), 505 – 534. 799

[Dauge et al.(2005)] Dauge, M., Costabel, M., and 800

Schwab, C. (2005). “Exponential convergence of 801

hp-fem for maxwell’s equations with weighted 802

regularization in polygonal domains,” Math. 803

Models Methods Appl. Sci. 15(4), 575–622. 804

[Fortin (1977)] Fortin, M. (1977). “An analysis of the 805

convergence of mixed finite element methods,” 806

RAIRO. Analyse Numérique 11 (4), 341–354. 807

https://docs.scipy.org/doc/scipy/reference/sparse.html
https://docs.scipy.org/doc/scipy/reference/sparse.html
https://docs.scipy.org/doc/scipy/reference/sparse.html
https://gitlab.inria.fr/openwind/release
https://gitlab.inria.fr/openwind/release
https://gitlab.inria.fr/openwind/release


Tournemenne & Chabassier, p. 13

[Gerdes and Ihlenburg(1999)] Gerdes, K., and Ihlen-808

burg, F. (1999). “On the pollution effect in FE809

solutions of the 3D-Helmholtz equation,” Com-810

puter Methods in Applied Mechanics and Engi-811

neering 170(1–2), 155–172.812

[Gilbert et al.(2006)] Gilbert, J., Ruiz, L. L.,813

and Gougeon, S. (2006). “Influence de la814

température sur la justesse d’un instrument815
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