5 research outputs found
A tomografia por emissão de pósitrons: uma nova modalidade na medicina nuclear brasileira
A medicina nuclear utiliza substâncias radioativas para diagnosticar e tratar doenças. Essa especialidade médica, capaz de fornecer informações fisiológicas e metabólicas sobre o corpo humano, se tornou uma ferramenta fundamental para a detecção precoce de muitas desordens, inclusive vários tipos de câncer. O presente artigo descreve os marcos históricos da medicina nuclear, os princípios físicos básicos que subjazem à tomografia por emissão de pósitrons (PET), um método de imagem usado para mapear a distribuição de radiofármacos no corpo para fins diagnósticos e terapêuticos, e o estado atual dessa modalidade no Brasil
Performance and Clinical Use of Collimators for Medium and Low Energy Photons
Desempenho e Uso clinico dos Colimadores para Fótons de Média e Baixa EnergiaPerformance and Clinical Use of Collimators for Medium and Low Energy Photon
Methods for quantification of cerebral glycolytic metabolism using 2-deoxy-2-[18 F]fluoroglucose in small animals
Abstract Introduction The use of the same imaging and quantification techniques in small animals and clinical studies presents the opportunity for direct translational research in drug discovery and development, in neuropharmacological basis of neurological and psychiatric diseases, and in optimization of drug therapy. Thus, positron emission tomography (PET) studies in rodents can bridge the gap between pre-clinical and clinical research. The aim should be to find a method with capability to measure, without compromising accuracy, glucose distribution in the structures of the brain, which can also be used in pathological situations and with applicability for other substances than glucose analogue. Methods This is a systematic review of several assessment techniques available, including visual and quantitative methods that enable the investigation of the transport mechanisms and enzymes involved in glucose metabolism in the brain. In addition to the ex vivo methods, PET with glucose analogues allows in vivo analyses using qualitative, semiquantitative and quantitative methods. Results These techniques provide different results, and the applicability of a specific method is related to the purpose of the study and the multiple factors that may interfere in the process. Conclusion This review provides a solid background of tools and quantification methods for medical physicists and other professionals interested in cerebral glycolytic metabolism quantification in experimental animals. It also addresses the main factors related to animals, equipment and techniques that are used, as well as how these factors should be understood to better interpret the results obtained from experiments
Comparison of different quantification methods for 18F-fluorodeoxyglucose-positron emission tomography studies in rat brains
OBJECTIVES: This study aimed to evaluate several methods to estimate glucose consumption in the male Wister rat brain as measured by PET. METHODS: Fourteen male Wistar normoglycemic rats were studied. The input function consisted of seventeen blood samples drawn manually from the femoral artery. Glucose uptake values were calculated using the input function resulting from the arterial blood samples and the tissue time-activity curve derived from the PET images. The estimated glucose consumption rate (Ki) based on the 2-tissue compartment model (2TCM) served as the standard for comparisons with the values calculated by the Patlak analysis and with the fractional uptake rate (FUR), standardized uptake value (SUV) and glucose corrected SUV (SUVglu). RESULTS: No significant difference between the standard Ki and the Patlak Ki was observed. The standard Ki was also found to have strong correlations and concordance with the Ki value estimated by the Patlak analysis. The FUR method presented an excellent correlation with the Ki value obtained by the 2TCM/Patlak analyses, in contrast to the SUV or SUVglu. CONCLUSIONS: From a methodological point of view, the present findings confirm the theoretical limitations of the cerebral SUV and SUVglu as a substitute for Ki in the estimation of glucose consumption in the brain. Our data suggest that the FUR is the surrogate to Ki