26 research outputs found

    Gamma rays from Dark Matter Annihilation in the Central Region of the Galaxy

    Full text link
    In this article, we review the prospects for the Fermi satellite (formerly known as GLAST) to detect gamma rays from dark matter annihilations in the Central Region of the Milky Way, in particular on the light of the recent astrophysical observations and discoveries of Imaging Atmospheric Cherenkov Telescopes. While the existence of significant backgrounds in this part of the sky limits Fermi's discovery potential to some degree, this can be mitigated by exploiting the peculiar energy spectrum and angular distribution of the dark matter annihilation signal relative to those of astrophysical backgrounds.Comment: v3: corrected typos, content unchange

    LSST Science Book, Version 2.0

    Get PDF
    A survey that can cover the sky in optical bands over wide fields to faint magnitudes with a fast cadence will enable many of the exciting science opportunities of the next decade. The Large Synoptic Survey Telescope (LSST) will have an effective aperture of 6.7 meters and an imaging camera with field of view of 9.6 deg^2, and will be devoted to a ten-year imaging survey over 20,000 deg^2 south of +15 deg. Each pointing will be imaged 2000 times with fifteen second exposures in six broad bands from 0.35 to 1.1 microns, to a total point-source depth of r~27.5. The LSST Science Book describes the basic parameters of the LSST hardware, software, and observing plans. The book discusses educational and outreach opportunities, then goes on to describe a broad range of science that LSST will revolutionize: mapping the inner and outer Solar System, stellar populations in the Milky Way and nearby galaxies, the structure of the Milky Way disk and halo and other objects in the Local Volume, transient and variable objects both at low and high redshift, and the properties of normal and active galaxies at low and high redshift. It then turns to far-field cosmological topics, exploring properties of supernovae to z~1, strong and weak lensing, the large-scale distribution of galaxies and baryon oscillations, and how these different probes may be combined to constrain cosmological models and the physics of dark energy.Comment: 596 pages. Also available at full resolution at http://www.lsst.org/lsst/sciboo

    Cosmology: small scale issues

    Get PDF
    The abundance of dark matter satellites and subhalos, the existence of density cusps at the centers of dark matter halos, and problems producing realistic disk galaxies in simulations are issues that have raised concerns about the viability of the standard cold dark matter (LambdaCDM) scenario for galaxy formation. This talk reviews these issues, and considers the implications for cold vs. various varieties of warm dark matter (WDM). The current evidence appears to be consistent with standard LambdaCDM, although improving data may point toward a rather tepid version of LambdaWDM - tepid since the dark matter cannot be very warm without violating observational constraints.Comment: 7 pages, 1 figure, to appear in the proceedings of the 8th UCLA Dark Matter Symposium, Marina del Rey, USA, 20-22 February 200

    Formation of z similar to 6 quasars from hierarchical galaxy mergers

    No full text
    The discovery of luminous quasars at redshift z ~ 6 indicates the presence of supermassive black holes (SMBHs) of mass ~10^9 Msun when the Universe was less than one billion years old. This finding presents several challenges for theoretical models. Here, we present the first multi-scale simulations that, together with a self-regulated model for the SMBH growth, produce a luminous quasar at z ~ 6.5 in the LCDM paradigm. We follow the hierarchical assembly history of the most massive halo in a ~ 3 Gpc^3 volume, and find that this halo of ~ 8x 10^{12} Msun forming at z ~ 6.5 after several major mergers is able to reproduce a number of observed properties of SDSS J1148+5251, the most distant quasar detected at z =6.42 (Fan et al. 2003). Moreover, the SMBHs grow through gas accretion below the Eddington limit in a self-regulated manner owing to feedback. We find that the progenitors experience significant star formation (up to 10^4 Msun/yr) preceding the major quasar phase such that the stellar mass of the quasar host reaches 10^{12} Msun at z ~ 6.5, consistent with observations of significant metal enrichment in SDSS J1148+5251. Our results provide a viable formation mechanism for z ~ 6 quasars in the standard LCDM cosmology, and demonstrate a common, merger-driven origin for the rarest quasars and the fundamental SMBH-host correlation in a hierarchical Universe.(Abridged)Comment: 25 pages, 15 figures, accepted to ApJ. Version with full resolution images is available at http://www.cfa.harvard.edu/~yxli/quasar/quasar.pd

    Reheating neutron stars with the annihilation of self-interacting dark matter

    No full text
    [[abstract]]Compact stellar objects such as neutron stars (NS) are ideal places for capturing dark matter (DM) particles. We study the effect of self-interacting DM (SIDM) captured by nearby NS that can reheat it to an appreciated surface temperature through absorbing the energy released due to DM annihilation. When DM-nucleon cross section σχn is small enough, DM self-interaction will take over the capture process and make the number of captured DM particles increased as well as the DM annihilation rate. The corresponding NS surface temperature resulted from DM self-interaction is about hundreds of Kelvin and is potentially detectable by the future infrared telescopes. Such observations could act as the complementary probe on DM properties to the current DM direct searches.[[notice]]補正完

    On the evolution process of two-component dark matter in the Sun

    No full text
    [[abstract]]We introduce dark matter (DM) evolution process in the Sun under a two- component DM (2DM) scenario. Both DM species χ and ξ with masses heavier than 1 GeV are considered. In this picture, both species could be captured by the Sun through DM-nucleus scattering and DM self-scatterings, e.g. χχ and ξξ collisions. In addition, the heterogeneous self-scattering due to χ and ξ collision is essentially possible in any 2DM models. This new introduced scattering naturally weaves the evolution processes of the two DM species that was assumed to evolve independently. Moreover, the heterogeneous self-scattering enhances the number of DM being captured in the Sun mutually. This effect significantly exists in a broad range of DM mass spectrum. We have studied this phenomena and its implication for the solar-captured DM annihilation rate. It would be crucial to the DM indirect detection when the two masses are close. General formalism of the 2DM evolution in the Sun as well as its kinematics are studied.[[notice]]補正完
    corecore