5,230 research outputs found

    Yeast gene CMR1/YDL156W is consistently co-expressed with genes participating in DNA-metabolic processes in a variety of stringent clustering experiments

    Get PDF
    © 2013 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/3.0/, which permits unrestricted use, provided the original author and source are credited.The binarization of consensus partition matrices (Bi-CoPaM) method has, among its unique features, the ability to perform ensemble clustering over the same set of genes from multiple microarray datasets by using various clustering methods in order to generate tunable tight clusters. Therefore, we have used the Bi-CoPaM method to the most synchronized 500 cell-cycle-regulated yeast genes from different microarray datasets to produce four tight, specific and exclusive clusters of co-expressed genes. We found 19 genes formed the tightest of the four clusters and this included the gene CMR1/YDL156W, which was an uncharacterized gene at the time of our investigations. Two very recent proteomic and biochemical studies have independently revealed many facets of CMR1 protein, although the precise functions of the protein remain to be elucidated. Our computational results complement these biological results and add more evidence to their recent findings of CMR1 as potentially participating in many of the DNA-metabolism processes such as replication, repair and transcription. Interestingly, our results demonstrate the close co-expressions of CMR1 and the replication protein A (RPA), the cohesion complex and the DNA polymerases α, δ and ɛ, as well as suggest functional relationships between CMR1 and the respective proteins. In addition, the analysis provides further substantial evidence that the expression of the CMR1 gene could be regulated by the MBF complex. In summary, the application of a novel analytic technique in large biological datasets has provided supporting evidence for a gene of previously unknown function, further hypotheses to test, and a more general demonstration of the value of sophisticated methods to explore new large datasets now so readily generated in biological experiments.National Institute for Health Researc

    Modeling the connectome of a simple spinal cord.

    Get PDF
    In this paper we develop a computational model of the anatomy of a spinal cord. We address a long-standing ambition of neuroscience to understand the structure-function problem by modeling the complete spinal cord connectome map in the 2-day old hatchling Xenopus tadpole. Our approach to modeling neuronal connectivity is based on developmental processes of axon growth. A simple mathematical model of axon growth allows us to reconstruct a biologically realistic connectome of the tadpole spinal cord based on neurobiological data. In our model we distribute neuron cell bodies and dendrites on both sides of the body based on experimental measurements. If growing axons cross the dendrite of another neuron, they make a synaptic contact with a defined probability. The total neuronal network contains ∼1,500 neurons of six cell-types with a total of ∼120,000 connections. The anatomical model contains random components so each repetition of the connectome reconstruction procedure generates a different neuronal network, though all share consistent features such as distributions of cell bodies, dendrites, and axon lengths. Our study reveals a complex structure for the connectome with many interesting specific features including contrasting distributions of connection length distributions. The connectome also shows some similarities to connectivity graphs for other animals such as the global neuronal network of C. elegans. In addition to the interesting intrinsic properties of the connectome, we expect the ability to grow and analyze a biologically realistic spinal cord connectome will provide valuable insights into the properties of the real neuronal networks underlying simple behavior

    Advancing precision public health using human genomics: examples from the field and future research opportunities

    Full text link
    Precision public health is a relatively new field that integrates components of precision medicine, such as human genomics research, with public health concepts to help improve population health. Despite interest in advancing precision public health initiatives using human genomics research, current and future opportunities in this emerging field remain largely undescribed. To that end, we provide examples of promising opportunities and current applications of genomics research within precision public health and outline future directions within five major domains of public health: biostatistics, environmental health, epidemiology, health policy and health services, and social and behavioral science. To further extend applications of genomics within precision public health research, three key cross-cutting challenges will need to be addressed: developing policies that implement precision public health initiatives at multiple levels, improving data integration and developing more rigorous methodologies, and incorporating initiatives that address health equity. Realizing the potential to better integrate human genomics within precision public health will require transdisciplinary efforts that leverage the strengths of both precision medicine and public health

    The topology, structure and PE interaction of LITAF underpin a Charcot-Marie-Tooth disease type 1C

    Get PDF
    BACKGROUND: Mutations in Lipopolysaccharide-induced tumour necrosis factor-α factor (LITAF) cause the autosomal dominant inherited peripheral neuropathy, Charcot-Marie-Tooth disease type 1C (CMT1C). LITAF encodes a 17 kDa protein containing an N-terminal proline-rich region followed by an evolutionarily-conserved C-terminal 'LITAF domain', which contains all reported CMT1C-associated pathogenic mutations. RESULTS: Here, we report the first structural characterisation of LITAF using biochemical, cell biological, biophysical and NMR spectroscopic approaches. Our structural model demonstrates that LITAF is a monotopic zinc-binding membrane protein that embeds into intracellular membranes via a predicted hydrophobic, in-plane, helical anchor located within the LITAF domain. We show that specific residues within the LITAF domain interact with phosphoethanolamine (PE) head groups, and that the introduction of the V144M CMT1C-associated pathogenic mutation leads to protein aggregation in the presence of PE. CONCLUSIONS: In addition to the structural characterisation of LITAF, these data lead us to propose that an aberrant LITAF-PE interaction on the surface of intracellular membranes contributes to the molecular pathogenesis that underlies this currently incurable disease.Wellcome-Beit Prize; Intermediate Clinical Fellowship (093809/Z/10/Z); Wellcome Trust Strategic Award 100140; Wellcome Trust grant 09302

    B cells do not take up bacterial DNA: An essential role for antigen in exposure of DNA to toll-like receptor-9

    Get PDF
    Murine dendritic cells (DC) and macrophages respond to bacterial CpG DNA through toll-like receptor 9 (TLR9). Although it is frequently assumed that bacterial DNA is a direct stimulus for B cells, published work does not reliably show responses of purified B cells. Here we show that purified splenic B cells did not respond to Escherichia coli DNA with induction of CD86, despite readily responding to single-stranded (ss) phosphodiester CpG oligodeoxynucleotides (ODN). This was due to a combination of weak responses to both long and double-stranded (ds) DNA. B-cell DNA uptake was greatly reduced with increasing DNA length. This contrasts with macrophages where DNA uptake and subsequent responses were enhanced with increasing DNA length. However, when DNA was physically linked to hen egg lysozyme (HEL), HEL-specific B cells showed efficient uptake of DNA, and limited proliferation in response to the HEL-DNA complex. We propose that, in the absence of other signals, B cells have poor uptake and responses to long dsDNA to prevent polyclonal activation. Conversely, when DNA is physically linked to a B-cell receptor (BCR) ligand, its uptake is increased, allowing TLR9-dependent B-cell activation in an antigen-specific manner. We could not generate fragments of E. coli DNA by limited DNaseI digestion that could mimic the stimulatory effect of ss CpG ODN on naive B cells. We suggest that the frequently studied polyclonal B-cell responses to CpG ODN are relevant to therapeutic applications of phosphorothioate-modified CpG-containing ODN, but not to natural responses to foreign or host dsDNA. Immunology and Cell Biology (2011) 89, 517-525; doi:10.1038/icb.2010.112; published online 5 October 201

    Four agendas for research and policy on emissions mitigation and well-being

    Get PDF
    The climate crisis requires nations to achieve human well-being with low national levels of carbon emissions. Countries vary from one another dramatically in how effectively they convert resources into well-being, and some nations with low levels of emissions have relatively high objective and subjective well-being. We identify urgent research and policy agendas for four groups of countries with either low or high emissions and well-being indicators. Least studied are those with low well-being and high emissions. Understanding social and political barriers to switching from high-carbon to lower-carbon modes of production and consumption, and ways to overcome them, will be fundamental

    Can simple rules control development of a pioneer vertebrate neuronal network generating behavior?

    Get PDF
    How do the pioneer networks in the axial core of the vertebrate nervous system first develop? Fundamental to understanding any full-scale neuronal network is knowledge of the constituent neurons, their properties, synaptic interconnections, and normal activity. Our novel strategy uses basic developmental rules to generate model networks that retain individual neuron and synapse resolution and are capable of reproducing correct, whole animal responses. We apply our developmental strategy to young Xenopus tadpoles, whose brainstem and spinal cord share a core vertebrate plan, but at a tractable complexity. Following detailed anatomical and physiological measurements to complete a descriptive library of each type of spinal neuron, we build models of their axon growth controlled by simple chemical gradients and physical barriers. By adding dendrites and allowing probabilistic formation of synaptic connections, we reconstruct network connectivity among up to 2000 neurons. When the resulting "network" is populated by model neurons and synapses, with properties based on physiology, it can respond to sensory stimulation by mimicking tadpole swimming behavior. This functioning model represents the most complete reconstruction of a vertebrate neuronal network that can reproduce the complex, rhythmic behavior of a whole animal. The findings validate our novel developmental strategy for generating realistic networks with individual neuron- and synapse-level resolution. We use it to demonstrate how early functional neuronal connectivity and behavior may in life result from simple developmental "rules," which lay out a scaffold for the vertebrate CNS without specific neuron-to-neuron recognition

    Pulsar Results with the Fermi Large Area Telescope

    Full text link
    The launch of the Fermi Gamma-ray Space Telescope has heralded a new era in the study of gamma-ray pulsars. The population of confirmed gamma-ray pulsars has gone from 6-7 to more than 60, and the superb sensitivity of the Large Area Telescope (LAT) on Fermi has allowed the detailed study of their spectra and light curves. Twenty-four of these pulsars were discovered in blind searches of the gamma-ray data, and twenty-one of these are, at present, radio quiet, despite deep radio follow-up observations. In addition, millisecond pulsars have been confirmed as a class of gamma-ray emitters, both individually and collectively in globular clusters. Recently, radio searches in the direction of LAT sources with no likely counterparts have been highly productive, leading to the discovery of a large number of new millisecond pulsars. Taken together, these discoveries promise a great improvement in the understanding of the gamma-ray emission properties and Galactic population of pulsars. We summarize some of the results stemming from these newly-detected pulsars and their timing and multi-wavelength follow-up observations.Comment: 21 pages, 9 figures, to appear in Proceedings of ICREA Workshop on The High-Energy Emission from Pulsars and their Systems, Sant Cugat, Spain, 2010 April 12-16 (Springer

    Preserving the impossible: conservation of soft-sediment hominin footprint sites and strategies for three-dimensional digital data capture.

    Get PDF
    Human footprints provide some of the most publically emotive and tangible evidence of our ancestors. To the scientific community they provide evidence of stature, presence, behaviour and in the case of early hominins potential evidence with respect to the evolution of gait. While rare in the geological record the number of footprint sites has increased in recent years along with the analytical tools available for their study. Many of these sites are at risk from rapid erosion, including the Ileret footprints in northern Kenya which are second only in age to those at Laetoli (Tanzania). Unlithified, soft-sediment footprint sites such these pose a significant geoconservation challenge. In the first part of this paper conservation and preservation options are explored leading to the conclusion that to 'record and digitally rescue' provides the only viable approach. Key to such strategies is the increasing availability of three-dimensional data capture either via optical laser scanning and/or digital photogrammetry. Within the discipline there is a developing schism between those that favour one approach over the other and a requirement from geoconservationists and the scientific community for some form of objective appraisal of these alternatives is necessary. Consequently in the second part of this paper we evaluate these alternative approaches and the role they can play in a 'record and digitally rescue' conservation strategy. Using modern footprint data, digital models created via optical laser scanning are compared to those generated by state-of-the-art photogrammetry. Both methods give comparable although subtly different results. This data is evaluated alongside a review of field deployment issues to provide guidance to the community with respect to the factors which need to be considered in digital conservation of human/hominin footprints
    corecore