124 research outputs found

    SecureMEMS: Selective Deposition of Energetic Materials

    Get PDF
    There exists a pressing operational need to secure and control access to high-valued electromechanical systems, and in some cases render them inoperable. Developing a reliable method for depositing energetic materials will allow for the near-seamless integration of electromechanical systems and energetic material, and, in turn, provide the pathway for security and selective destruction that is needed. In this work, piezoelectric inkjet printing was used to selectively deposit energetic materials. Nanothermites, comprising of nanoscale aluminum and nanoscale copper oxide suspended in dimethyl-formamide (DMF), were printed onto silicon wafers, which enabled both thermal and thrust measurements of the decomposing energetic material. Various solids loadings were studied in order to optimize printing characteristics. Going forward, further studies will focus on the plausibility of inkjet printing other energetic materials for the purposes of the degradation of electromechanical systems

    High Speed X-ray Phase Contrast Imaging of Energetic Composites under Dynamic Compression

    Get PDF
    Fracture of crystals and frictional heating are associated with the formation of “hot spots” (localized heating) in energetic composites such as polymer bonded explosives (PBXs). Traditional high speed optical imaging methods cannot be used to study the dynamic sub-surface deformation and the fracture behavior of such materials due to their opaque nature. In this study, high speed synchrotron X-ray experiments are conducted to visualize the in situ deformation and the fracture mechanisms in PBXs composed of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) crystals and hydroxyl-terminated polybutadiene binder doped with iron (III) oxide. A modified Kolsky bar apparatus was used to apply controlled dynamic compression on the PBX specimens, and a high speed synchrotron X-ray phase contrast imaging (PCI) setup was used to record the in situ deformation and failure in the specimens. The experiments show that synchrotron X-ray PCI provides a sufficient contrast between the HMX crystals and the doped binder, even at ultrafast recording rates. Under dynamic compression, most of the cracking in the crystals was observed to be due to the tensile stress generated by the diametral compression applied from the contacts between the crystals. Tensile stress driven cracking was also observed for some of the crystals due to the transverse deformation of the binder and superior bonding between the crystal and the binder. The obtained results are vital to develop improved understanding and to validate the macroscopic and mesoscopic numerical models for energetic composites so that eventually hot spot formation can be predicted

    Turning Points in the Evolution of Isolated Neutron Stars' Magnetic Fields

    Get PDF
    During the life of isolated neutron stars (NSs) their magnetic field passes through a variety of evolutionary phases. Depending on its strength and structure and on the physical state of the NS (e.g. cooling, rotation), the field looks qualitatively and quantitatively different after each of these phases. Three of them, the phase of MHD instabilities immediately after NS's birth, the phase of fallback which may take place hours to months after NS's birth, and the phase when strong temperature gradients may drive thermoelectric instabilities, are concentrated in a period lasting from the end of the proto--NS phase until 100, perhaps 1000 years, when the NS has become almost isothermal. The further evolution of the magnetic field proceeds in general inconspicuous since the star is in isolation. However, as soon as the product of Larmor frequency and electron relaxation time, the so-called magnetization parameter, locally and/or temporally considerably exceeds unity, phases, also unstable ones, of dramatic changes of the field structure and magnitude can appear. An overview is given about that field evolution phases, the outcome of which makes a qualitative decision regarding the further evolution of the magnetic field and its host NS.Comment: References updated, typos correcte

    X-ray emission line gas in the LINER galaxy M81

    Get PDF
    We present the soft X-ray spectrum of the LINER galaxy M81 derived from a long observation with the XMM RGS. The spectrum is dominated by continuum emission from the active nucleus, but also contains emission lines from Fe L, and H-like and He-like N, O, and Ne. The emission lines are significantly broader than the RGS point-source spectral resolution; in the cross dispersion direction the emission lines are detected adjacent to, as well as coincident with, the active nucleus. This implies that they originate in a region of a few arc-minutes spatial extent (1 arc-minute ~ 1 kpc in M81). The flux ratios of the OVII triplet suggest that collisional processes are responsible for the line emission. A good fit to the whole RGS spectrum is obtained using a model consisting of an absorbed power law from the active nucleus and a 3 temperature optically thin thermal plasma. Two of the thermal plasma components have temperatures of 0.18+-0.04 keV and 0.64+-0.04 keV, characteristic of the hot interstellar medium produced by supernovae; the combined luminosity of the plasma at these two temperatures accounts for all the unresolved bulge X-ray emission seen in the Chandra observation by Tennant et al. (2001). The third component has a higher temperature (~1.7 keV), and we argue that this, along with some of the 0.64 keV emission, comes from X-ray binaries in the bulge of M81.Comment: 7 pages, 4 figures, accepted for publication in A&

    Complex variations of X-ray polarization in the X-ray pulsar LS V +44 17/RX J0440.9+4431

    Full text link
    We report on \ixpe observations of the Be-transient X-ray pulsar LS V +44 17/RX J0440.9+4431 at two luminosity levels during the giant outburst in January--February 2023. Considering the observed spectral variability and changes in the pulse profiles, the source was likely caught in super- and sub-critical states with significantly different emission region geometry, associated with the presence of accretion columns and hot spots, respectively. We focus here on the pulse-phase resolved polarimetric analysis and find that the observed dependencies of the polarization degree and polarization angle (PA) on pulse phase are indeed drastically different for the two observations. The observed differences, if interpreted within the framework of the rotating vector model (RVM), imply dramatic variations of the spin axis inclination and the position angle and the magnetic colatitude by tens of degrees within just a few days separating the observations. We suggest that the apparent changes in the observed PA phase dependence are predominantly related to the presence of a polarized unpulsed component in addition to the polarized radiation associated with the pulsar itself. We show that the observed PA phase dependence in both observations can then be explained with a single set of RVM parameters defining the pulsar's geometry. We also suggest that the additional polarized component is likely produced by scattering of the pulsar radiation off the equatorial disk wind.Comment: 9 pages, 5 figures, submitted to A&

    Discovery of strongly variable X-ray polarization in the neutron star low-mass X-ray binary transient XTE J1701-462

    Get PDF
    CONTEXT: After about 16 years since its first outburst, the transient neutron star low-mass X-ray binary XTE J1701−462 turned on again in September 2022, allowing for the first study of its X-ray polarimetric characteristics by a dedicated observing program with the Imaging X-ray Polarimeter Explorer (IXPE). AIMS: Polarimetric studies of XTE J1701−462 have been expected to improve our understanding of accreting weakly magnetized neutron stars, in particular, the physics and the geometry of the hot inner regions close to the compact object. METHOD: The IXPE data of two triggered observations were analyzed using time-resolved spectroscopic and polarimetric techniques, following the source along its Z-track of the color–color diagram. RESULTS: During the first pointing on 2022 September 29, an average 2–8 keV polarization degree of (4.6 ± 0.4)% was measured, the highest value found up to now for this class of sources. Conversely, only a ∌0.6% average degree was obtained during the second pointing ten days later. CONCLUSIONS: The polarimetric signal appears to be strictly related to the higher energy blackbody component associated with the boundary layer (BL) emission and its reflection from the inner accretion disk, and it is as strong as 6.1% and 1.2% (> 95% significant) above 3–4 keV for the two measurements, respectively. The variable polarimetric signal is apparently related to the spectral characteristics of XTE J1701−462, which is the strongest when the source was in the horizontal branch of its Z-track and the weakest in the normal branch. These IXPE results provide new important observational constraints on the physical models and geometry of the Z-sources. Here, we discuss the possible reasons for the presence of strong and variable polarization among these sources

    Uncovering the geometry of the hot X-ray corona in the Seyfert galaxy NGC 4151 with IXPE

    Get PDF
    We present an X-ray spectropolarimetric analysis of the bright Seyfert galaxy NGC 4151. The source has been observed with the Imaging X-ray Polarimetry Explorer (IXPE) for 700 ks, complemented with simultaneous XMM–Newton (50 ks) and NuSTAR (100 ks) pointings. A polarization degree Π = 4.9 ± 1.1 per cent and angle Κ = 86° ± 7° east of north (68 per cent confidence level) are measured in the 2–8 keV energy range. The spectropolarimetric analysis shows that the polarization could be entirely due to reflection. Given the low reflection flux in the IXPE band, this requires, however, a reflection with a very large (>38 per cent) polarization degree. Assuming more reasonable values, a polarization degree of the hot corona ranging from ∌4 to ∌8 per cent is found. The observed polarization degree excludes a ‘spherical’ lamppost geometry for the corona, suggesting instead a slab-like geometry, possibly a wedge, as determined via Monte Carlo simulations. This is further confirmed by the X-ray polarization angle, which coincides with the direction of the extended radio emission in this source, supposed to match the disc axis. NGC 4151 is the first active galactic nucleus with an X-ray polarization measure for the corona, illustrating the capabilities of X-ray polarimetry and IXPE in unveiling its geometry

    The X-ray polarization of the Seyfert 1 galaxy IC 4329A

    Get PDF
    We present an X-ray spectro-polarimetric analysis of the bright Seyfert galaxy IC 4329A. The Imaging X-ray Polarimetry Explorer (IXPE) observed the source for ∌500 ks, supported by XMM–Newton (∌60 ks) and NuSTAR (∌80 ks) exposures. We detect polarization in the 2–8 keV band with 2.97σ confidence. We report a polarization degree of 3.3 ± 1.1 per cent and a polarization angle of 78° ± 10° (errors are 1σ confidence). The X-ray polarization is consistent with being aligned with the radio jet, albeit partially due to large uncertainties on the radio position angle. We jointly fit the spectra from the three observatories to constrain the presence of a relativistic reflection component. From this, we obtain constraints on the inclination angle to the inner disc (<39° at 99 per cent confidence) and the disc inner radius (<11 gravitational radii at 99 per cent confidence), although we note that modelling systematics in practice add to the quoted statistical error. Our spectropolarimetric modelling indicates that the 2–8 keV polarization is consistent with being dominated by emission directly observed from the X-ray corona, but the polarization of the reflection component is completely unconstrained. Our constraints on viewer inclination and polarization degree tentatively favour more asymmetric, possibly out-flowing, coronal geometries that produce more highly polarized emission, but the coronal geometry is unconstrained at the 3σ level

    The geometry of the hot corona in MCG-05-23-16 constrained by X-ray polarimetry

    Get PDF
    We report on the second observation of the radio-quiet active galactic nucleus MCG-05-23-16 performed with the Imaging X-ray Polarimetry Explorer (IXPE). The observation started on 2022 November 6 for a net observing time of 640 ks, and was partly simultaneous with NuSTAR (86 ks). After combining these data with those obtained in the first IXPE pointing on 2022 May (simultaneous with XMM–Newton and NuSTAR) we find a 2–8 keV polarization degree Π = 1.6 ± 0.7 (at 68 per cent confidence level), which corresponds to an upper limit Π = 3.2 per cent (at 99 per cent confidence level). We then compare the polarization results with Monte Carlo simulations obtained with the monk code, with which different coronal geometries have been explored (spherical lamppost, conical, slab, and wedge). Furthermore, the allowed range of inclination angles is found for each geometry. If the best-fitting inclination value from a spectroscopic analysis is considered, a cone-shaped corona along the disc axis is disfavoured

    X-ray polarimetry and spectroscopy of the neutron star low-mass X-ray binary GX 9+9: An in-depth study with IXPE and NuSTAR

    Get PDF
    We report on a comprehensive analysis of simultaneous X-ray polarimetric and spectral data of the bright atoll source GX 9+9 with the Imaging X-ray Polarimetry Explorer (IXPE) and NuSTAR. The source is significantly polarized in the 4–8 keV band, with a degree of 2.2%  ±  0.5% (uncertainty at the 68% confidence level). The NuSTAR broad-band spectrum clearly shows an iron line, and is well described by a model including thermal disc emission, a Comptonized component, and reflection. From a spectro-polarimetric fit, we obtain an upper limit to the polarization degree of the disc of 4% (at the 99% confidence level), while the contribution of Comptonized and reflected radiation cannot be conclusively separated. However, the polarization is consistent with resulting from a combination of Comptonization in a boundary or spreading layer, plus reflection off the disc, which significantly contributes in any realistic scenario
    • 

    corecore