2,703 research outputs found

    Characterization of elastic scattering near a Feshbach resonance in rubidium 87

    Full text link
    The s-wave scattering length for elastic collisions between 87Rb atoms in the state |f,m_f>=|1,1> is measured in the vicinity of a Feshbach resonance near 1007 G. Experimentally, the scattering length is determined from the mean-field driven expansion of a Bose-Einstein condensate in a homogeneous magnetic field. The scattering length is measured as a function of the magnetic field and agrees with the theoretical expectation. The position and the width of the resonance are determined to be 1007.40 G and 0.20 G, respectively.Comment: 4 pages, 2 figures minor revisions: added Ref.6, included error bar

    Bose-Einstein condensate collapse: a comparison between theory and experiment

    Full text link
    We solve the Gross-Pitaevskii equation numerically for the collapse induced by a switch from positive to negative scattering lengths. We compare our results with experiments performed at JILA with Bose-Einstein condensates of Rb-85, in which the scattering length was controlled using a Feshbach resonance. Building on previous theoretical work we identify quantitative differences between the predictions of mean-field theory and the results of the experiments. Besides the previously reported difference between the predicted and observed critical atom number for collapse, we also find that the predicted collapse times systematically exceed those observed experimentally. Quantum field effects, such as fragmentation, that might account for these discrepancies are discussed.Comment: 4 pages, 2 figure

    Advanced microsamples: Current applications and considerations for mass spectrometry-based metabolic phenotyping pipelines

    Get PDF
    Microsamples are collections usually less than 50 µL, although all devices that we have captured as part of this review do not fit within this definition (as some can perform collections of up to 600 µL); however, they are considered microsamples that can be self-administered. These microsamples have been introduced in pre-clinical, clinical, and research settings to overcome obstacles in sampling via traditional venepuncture. However, venepuncture remains the sampling gold standard for the metabolic phenotyping of blood. This presents several challenges in metabolic phenotyping workflows: accessibility for individuals in rural and remote areas (due to the need for trained personnel), the unamenable nature to frequent sampling protocols in longitudinal research (for its invasive nature), and sample collection difficulty in the young and elderly. Furthermore, venous sample stability may be compromised when the temperate conditions necessary for cold-chain transport are beyond control. Alternatively, research utilising microsamples extends phenotyping possibilities to inborn errors of metabolism, therapeutic drug monitoring, nutrition, as well as sport and anti-doping. Although the application of microsamples in metabolic phenotyping exists, it is still in its infancy, with whole blood being overwhelmingly the primary biofluid collected through the collection method of dried blood spots. Research into the metabolic phenotyping of microsamples is limited; however, with advances in commercially available microsampling devices, common barriers such as volumetric inaccuracies and the ‘haematocrit effect’ in dried blood spot microsampling can be overcome. In this review, we provide an overview of the common uses and workflows for microsampling in metabolic phenotyping research. We discuss the advancements in technologies, highlighting key considerations and remaining knowledge gaps for the employment of microsamples in metabolic phenotyping research. This review supports the translation of research from the ‘bench to the community’

    Microscopic theory of atom-molecule oscillations in a Bose-Einstein condensate

    Full text link
    In a recent experiment at JILA [E.A. Donley et al., Nature (London) 417, 529 (2002)] an initially pure condensate of Rb-85 atoms was exposed to a specially designed time dependent magnetic field pulse in the vicinity of a Feshbach resonance. The production of new components of the gas as well as their oscillatory behavior have been reported. We apply a microscopic theory of the gas to identify these components and determine their physical properties. Our time dependent studies allow us to explain the observed dynamic evolution of all fractions, and to identify the physical relevance of the pulse shape. Based on ab initio predictions, our theory strongly supports the view that the experiments have produced a molecular condensate.Comment: 18 pages, 20 figure

    Finite temperature scaling theory for the collapse of Bose-Einstein condensate

    Full text link
    We show how to apply the scaling theory in an inhomogeneous system like harmonically trapped Bose condensate at finite temperatures. We calculate the temperature dependence of the critical number of particles by a scaling theory within the Hartree-Fock approximation and find that there is a dramatic increase in the critical number of particles as the condensation point is approached.Comment: Published online [6 pages, 3 figures

    Collapse dynamics of trapped Bose-Einstein condensates

    Full text link
    We analyze the implosion and subsequent explosion of a trapped condensate after the scattering length is switched to a negative value. Our results compare very well qualitatively and fairly well quantitatively with the results of recent experiments at JILA.Comment: 4 pages, 3 figure

    A piezoelectric microvalve for compact high frequency high differential pressure micropumping systems

    No full text
    A piezoelectrically driven hydraulic amplification microvalve for use in compact high-performance hydraulic pumping systems was designed, fabricated, and experimentally characterized. High-frequency, high-force actuation capabilities were enabled through the incorporation of bulk piezoelectric material elements beneath a micromachined annular tethered-piston structure. Large valve stroke at the microscale was achieved with an hydraulic amplification mechanism that amplified (40/spl times/-50/spl times/) the limited stroke of the piezoelectric material into a significantly larger motion of a micromachined valve membrane with attached valve cap. These design features enabled the valve to meet simultaneously a set of high frequency (/spl ges/1 kHz), high pressure(/spl ges/300 kPa), and large stroke (20-30 /spl mu/m) requirements not previously satisfied by other hydraulic flow regulation microvalves. This paper details the design, modeling, fabrication, assembly, and experimental characterization of this valve device. Fabrication challenges are detailed

    Dynamic depletion in a Bose condensate via a sudden increase of the scattering length

    Full text link
    We examine the time-dependent quantum depletion of a trapped Bose condensate arising from a rapid increase of the scattering length. Our solution indicates that a significant buildup of incoherent atoms can occur within a characteristic time short compared with the harmonic trap period. We discuss how the depletion density and the characteristic time depend on the physical parameters of the condensate

    Hip fracture in the elderly multidisciplinary rehabilitation (FEMuR) feasibility study: testing the use of routinely collected data for future health economic evaluations

    Get PDF
    Background: Health economic evaluations rely on the accurate measurement of health service resource use in order to calculate costs. These are usually measured with patient completed questionnaires using instruments such as the Client Service Receipt Inventory (CSRI). These rely on participants' recall and can be burdensome to complete. Health service activity data are routinely captured by electronic databases.The aim was to test methods for obtaining these data and compare with those data collected using the CSRI, within a feasibility study of an enhanced rehabilitation intervention following hip fracture (Fracture in the Elderly Multidisciplinary Rehabilitation: FEMuR). Methods: Primary care activity including prescribing data was obtained from the Secure Anonymised Information Linkage (SAIL) Databank and secondary care activity (Emergency Department attendances, out-patient visits and in-patient days) directly from Betsi Cadwaladr University Health Board (BCUHB), North Wales, UK. These data were compared with patient responses from the CSRI using descriptive statistics and the intraclass correlation coefficient (ICC). Results: It was possible to compare health service resource use data for 49 out of 61 participants in the FEMuR study. For emergency department (ED) attendances, records matched in 23 (47%) cases, 21 (43%) over-reported on electronic records compared with CSRI and five participants (10%) under-reported, with an overall ICC of 0.42. For out-patient episodes, records matched in only six cases, 28 participants over-reported on electronic records compared with CSRI and 15 (12%) under-reported, with an overall ICC of only 0.27. For in-patient days, records matched exactly in only five cases (10%), but if an error margin of 7 days was allowed, then agreement rose to 39 (66%) cases, and the overall ICC for all data was 0.88.It was only possible to compare prescribing data for 12 participants. For prescribing data, the SAIL data reported 117 out of 118 items (99%) and the CSRI only 89 (79%) items. Conclusions: The use of routinely collected data has the potential to improve the efficiency of trials and other studies. Although the methodology to make the data available has been demonstrated, the data obtained was incomplete and the validity of using this method remains to be demonstrated. Trial registration: Trial registration: ISRCTN22464643 Registered 21 July 2014
    corecore