264 research outputs found

    Nanophotonic approaches to colourful solar cells and modules

    Get PDF
    The focus of this work was first to compile a literature review of the most relevant nanophotonic approaches proposed to realize structural colours for decorative and building-integrated solar cells and modules. Then, based on the gathered information, an alternative fabrication technique was proposed and experimentally investigated. From the literature review it was observed that the fabrication of colourful solar cells had been successfully achieved by integrating light filtering structures showing reflective structural colours (as opposed to light absorbing colours, e.g. dyes and pigments or metals), with different photovoltaic technologies. In general, the exploited light filtering mechanisms can be divided in multilayer interference, thin-film interference, diffraction gratins, plasmonic resonance and photonic bandgap in photonic crystals. The best results in terms of performance of the fabricated coloured devices had been obtained when the colouring structures had been integrated with standard, industrial crystalline silicon solar cells. On the other hand, advantages in terms of device thickness (amount of needed material) and colour purity had been obtained when the coloring structures had been used with a customized fabricated device (thin-film amorphous silicon solar cells, dye sensitized solar cells and perovskite solar cells). In the experimental part, a proofof-concept was presented for the fabrication of a colour filter by inkjet-printing three dimensional photonic crystals on glass. A colour filter fabricated in this way could be used with all photovoltaic technologies, since it consist of a separate semi-transparent layer that can placed over any kind of solar cell. The structure was realized by inkjet printing, which allows flexible control over pattern design and accurate material deposition, allowing for the possibility of printing multi- and single-coloured patterns on a photovoltaic device. According to the preliminary results, further research would be needed to intensity of the coloured reflection and weaken the broad-band light scattering by the inkjet-printed photonic crystals

    Integrated Energy Harvesting and Storage Systems for a Sustainable Future

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    RxpsG a new open project for Photoelectron and Electron Spectroscopy data processing

    Get PDF
    Data analysis and plotting is an important part of the research work accompanying any scientist. Once the experiments are concluded, generally a software allowing data reduction such as selection of background and its subtraction, peak fitting, graphical visualization is used to obtain a correct interpretation of the results. RxpsG is a public domain software with an easy user friendly interface oriented to X-ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES) data manipulation based on the R platform. All the features needed to analyze XPS, AES spectra are implemented and the software allows an immediate data reporting. Although the RxpsG is primarily devoted to electron and photoelectron spectral analysis, it allows any data in text format to be loaded and processed. RxpsG is a project open to contributions and implementation of new procedures. In this work we will describe the potentialities of the software and the more important features. Keywords: Spectral analysis, XPS, AES, R projec

    Modeling of morphology evolution in the injection molding process of thermoplastic polymers

    Get PDF
    A thorough analysis of the effect of operative conditions of injection molding process oil the morphology distribution inside the obtained moldings is performed, with particular reference to semi-crystal line polymers. The paper is divided into two parts: in the first part, the state of the art on the subject is outlined and discussed; in the second part, an example of the characterization required for a satisfactorily understanding and description of the phenomena is presented, starting from material characterization, passing through the monitoring of the process cycle and arriving to a deep analysis of morphology distribution inside the moldings. In particular, fully characterized injection molding tests are presented using an isotactic polypropylene, previously carefully characterized as far as most of properties of interest. The effects of both injection flow rate and mold temperature are analyzed. The resulting moldings morphology (in terms of distribution of crystallinity degree, molecular orientation and crystals structure and dimensions) are analyzed by adopting different experimental techniques (optical, electronic and atomic force microscopy, IR and WAXS analysis).Final morphological characteristics of the samples are compared with the predictions of a simulation code developed at University of Salerno for the simulation of the injection molding process

    Pouch-sealing as an effective way to fabricate flexible dye-sensitized solar cells and their integration with supercapacitors

    Get PDF
    The scientific interest in integrated energy harvesting and storage (HS) devices has increased exponentially in the last decade since they represent an optimal solution to power portable electronic devices and low consuming Internet of Thing (IoT) sensor nodes. The integration of energy storage devices with photovoltaics can allow to avoid problems such as continuous battery replacement and periodic maintenance, reducing overall costs. In this context, dye sensitized solar cells (DSSCs) integrated with a supercapacitor represent the best choice in terms of lifetime, charge-discharge efficiency, and simplicity of connection avoiding electrical signal conditioning between the two devices. DSSCs have many similarities with supercapacitors, with the only aspect that remains uncovered being the sealing of the device. Herein we propose a common vacuum sealing technology for the integration of a supercapacitor and a DSSC made with shared current collectors, to maximize the integration between the two technologies. The HS device showed a maximum overall photon to electrical conversion and storage efficiency (OPECSE) of 6.10% under only 0.1 SUN illumination, thanks to the high photoconversion efficiency showed by the pouch sealed DSSC, equal to 6.62%. The HS device showed a high stability under bending condition and repeated photo-charge/discharge cycling

    An Integrated Device for the Solar-Driven Electrochemical Conversion of CO2 to CO

    Get PDF
    The conversion of carbon dioxide into value-added products using sunlight, also called artificial photosynthesis, represents a remarkable and sustainable approach to store solar energy, transformin..

    Benefits of dietary supplements on the physical fitness of German Shepherd dogs during a drug detection training course

    Get PDF
    A high standard of physical fitness is an essential characteristic of drug detection dogs because it affects not only their ability to sustain high activity levels but also their attention and olfaction efficiency. Nutritional supplements could improve physical fitness by modulating energy metabolism, oxidative processes, and perceived fatigue. The aim of this study was to investigate the physiological and biochemical changes induced by submaximal exercise on drug detection dogs (German Shepherd breed) and to assess whether a dietary supplement improves their physical fitness. During a drug detection dog training course, seven dogs were fed with a basal diet (Control Group) for three-month period, while a further seven dogs were fed with a basal diet as well as a daily nutritional supplement containing branched-chain and limiting amino acids, carnitine, vitamins, and octacosanol (Treatment Group). At the end of this period, individual physical fitness was assessed by making each subject take a graded treadmill exercise test. A human heart rate monitor system was used to record the dog's heart rate (HR) during the treadmill exercise and the subsequent recovery period. The parameters related to HR were analysed using nonparametric statistics. Blood samples were collected before starting the nutritional supplement treatment, before and after the treadmill exercise and following recovery. Linear mixed models were used. The dietary supplements accelerated HR recovery, as demonstrated by the lower HR after recovery (P<0.05) and Time constants of HR decay (P<0.05), and by the higher Absolute HR Recovered (P<0.05) recorded in the Treatment group compared with the Control dogs. The supplemented dogs showed the lowest concentrations of creatine kinase (CK; P<0.001), aspartate aminotransferase (AST, P<0.05) and non-esterified fatty acids (NEFA; P<0.01) suggesting a reduction in muscle damage and improvement of energy metabolism. These data suggest that this combined supplement can significantly enhance the physical fitness of drug detection dogs

    Using Species Distribution Models (SDMs) to Estimate the Suitability of European Mediterranean Non-Native Area for the Establishment of Toumeyella Parvicornis (Hemiptera: Coccidae)

    Get PDF
    The pine tortoise scale, Toumeyella parvicornis, is an insect native to the Nearctic region that is able to infest several Pinus species. It can cause weakening, defoliation and, at high infestation levels, tree death. After its first report in Italy in 2015, the pest spread rapidly over the surrounding areas and was reported in France in 2021. Due to the threat that this pest poses to pine trees, the suitability of European Mediterranean basin areas for T. parvicornis at different spatial scales was estimated by constructing species distribution models (SDMs) using bioclimatic variables. Our results showed that several coastal areas of the Mediterranean basin area could be suitable for T. parvicornis. Based on performance assessment, all the SDMs tested provided a good representation of the suitability of European Mediterranean non-native area for T. parvicornis at different spatial scales. In particular, most of the areas with a medium or high level of suitability corresponded to the geographical range of distribution of different Pinus spp. in Europe. Predicting the suitability of European Mediterranean areas for T. parvicornis provides a fundamental tool for early detection and management of the spread of this pest in Europe.N.D.S. is funded by the Lazio Region (Agriculture Department) and the Università degli Studi della Tuscia (Italy). The research was carried out in the frame of the Italian MIUR (Ministry for Education, University and Research) initiative ‘Department of Excellence’ (Law 232/2016). L.R. and R.M. are funded by MUR (Italian Ministry of University and Research) in the framework of the European Social Funding REACT-EU—National Program for Research and Innovation 2014–2020
    corecore