55 research outputs found

    A CFD Based Throughflow Method With Three-Dimensional Flow Features Modelling

    Get PDF
    The paper describes the development and validation of a novel computational fluid dynamics (CFD)-based throughflow model. It is based on the axisymmetric Euler equations with tangential blockage and body forces and inherits its numerical scheme from a state-of-the-art CFD solver (TRAF code). Secondary and tip leakage flow features are modelled in terms of Lamb–Oseen vortices and a body force field. Source and sink terms in the governing equations are employed to model tip leakage flow effects. A realistic distribution of entropy in the meridional and spanwise directions is proposed in order to compute dissipative forces on the basis of a distributed loss model. The applications are mainly focused on turbine configurations. First, a validation of the secondary flow modelling is carried out by analyzing a linear cascade based on the T106 blade section. Then, the throughflow procedure is used to analyze the transonic CT3 turbine stage studied in the framework of the TATEF2 (Turbine Aero-Thermal External Flows) European program. The performance of the method is evaluated by comparing predicted operating characteristics and spanwise distributions of flow quantities with experimental data

    Secondary flow and radial mixing modelling for CFD-based Through-Flow methods: an axial turbine application

    Get PDF
    Abstract The paper presents the theoretical bases and an application of a CFD-based Through-Flow model. The code solves the axisymmetric Euler equations and takes into account the effect of tangential blockage and body force. It inherits its numerical scheme from a state-of-the-art CFD solver (TRAF code). Blade body forces are calculated directly from the tangency condition to the meridional flow surface, which is iteratively adapted during the time-marching procedure. Dissipative forces are computed through a realistic distribution of entropy along streamlines. Both secondary flow and tip leakage effects on the meridional flow-field are included through the adoption of a concentrated vortex model, while the corresponding loss contributions are evaluated from correlations. Also, a radial mixing model considering both turbulent diffusion and spanwise convection is implemented. The accuracy of the method is assessed by comparison with CFD calculations and experimental data on the transonic CT3 turbine stage tested in the framework of the TATEF2 European project. A good agreement in terms of overall performance and radial distributions is achieved for both design and off-design operating conditions

    A new advanced railgun system for debris impact study

    Get PDF
    The growing quantity of debris in Earth orbit poses a danger to users of the orbital environment, such as spacecraft. It also increases the risk that humans or manmade structures could be impacted when objects reenter Earth's atmosphere. During the design of a spacecraft, a requirement may be specified for the surviv-ability of the spacecraft against Meteoroid / Orbital Debris (M/OD) impacts throughout the mission; further-more, the structure of a spacecraft is designed to insure its integrity during the launch and, if it is reusable, during descent, re-entry and landing. In addition, the structure has to provide required stiffness in order to allow for exact positioning of experiments and antennas, and it has to protect the payload against the space environment. In order to decrease the probability of spacecraft failure caused by M/OD, space maneuver is needed to avoid M/OD if the M/OD has dimensions larger than 10cm, but for M/OD with dimensions less than 1cm M/OD shields are needed for spacecrafts. It is therefore necessary to determine the impact-related failure mechanisms and associated ballistic limit equations (BLEs) for typical spacecraft components and subsys-tems. The methods that are used to obtain the ballistic limit equations are numerical simulations and la-borato-ry experiments. In order to perform an high energy ballistic characterization of layered structures, a new ad-vanced electromagnetic accelerator, called railgun, has been assembled and tuned. A railgun is an electrically powered electromagnetic projectile launcher. Such device is made up of a pair of parallel conducting rails, which a sliding metallic armature is accelerated along by the electromagnetic effect (Lorentz force) of a cur-rent that flows down one rail, into the armature and then back along the other rail, thanks to a high power pulse given by a bank of capacitors. A tunable power supplier is used to set the capacitors charging voltage at the desired level: in this way the Rail Gun energy can be tuned as a function of the desired bullet velocity. This facility is able to analyze both low and high velocity impacts. A numerical simulation is also performed by using the Ansys Autodyn code in order to analyze the damage. The experimental results and numerical simulations show that the railgun-device is a good candidate to perform impact testing of materials in the space debris energy range

    numerical study of flutter stabilization in low pressure turbine rotor with intentional mistuning

    Get PDF
    Abstract Intentional mistuning concepts are used to mitigate the risk of flutter occurrence for compressor and turbine blades, as this design strategy represents one of the key aspects in nowadays turbomachinery aeroelastic design. In this paper, the effects of a mistuning pattern on LPT flutter stability are numerically investigated in order to highlight the differences with the classic tuned configuration. A LPT rotor is analysed with an intentional mistuning pattern composed by alternate blades with different additional masses at the blade tip, and the corresponding tuned configuration, consisting of the blisk (blade+disk) with identical blades. The first part of this work is devoted to the modal analysis for tuned and mistuned cases. Frequencies and mode shapes of the first bending mode family, obtained by FEM modal analysis in cyclic symmetry, are then used to perform CFD flutter analysis with moving blades. The results confirm the stabilizing effect of alternate mistuning pattern in contrast with the tuned system which denotes a strong flutter instability for a large range of negative nodal diameters. The numerically predicted flutter stabilization effect has been confirmed by measurements carried out during a tip timing experimental campaign performed within the Future EU project

    Acercándose a la investigación

    Get PDF
    Nota de prensa en la que trata de impulsar el interés por la investigación. El Instituto de Salud Carlos III colabora en el programa “INVESTIGA I+D+i”, puesto en marcha por la Fundación San Patricio, para promover el interés de los adolescentes por la cienci

    Quaderni di musica nuova a scuola n.1

    Get PDF

    modelling and simulation for major incidents

    Get PDF
    In recent years, there has been a rise in Major Incidents with big impact on the citizens health and the society. Without the possibility of conducting live experiments when it comes to physical and/or toxic trauma, only an accurate in silico reconstruction allows us to identify organizational solutions with the best possible chance of success, in correlation with the limitations on available resources (e.g. medical team, first responders, treatments, transports, and hospitals availability) and with the variability of the characteristic of event (e.g. type of incident, severity of the event and type of lesions). Utilizing modelling and simulation techniques, a simplified mathematical model of physiological evolution for patients involved in physical and toxic trauma incident scenarios has been developed and implemented. The model formalizes the dynamics, operating standards and practices of medical response and the main emergency service in the chain of emergency management during a Major Incident

    The Polarized Cosmic Hand: IXPE Observations of PSR B1509-58/MSH 15-52

    Full text link
    We describe IXPE polarization observations of the Pulsar Wind Nebula (PWN) MSH15-52, the `Cosmic Hand'. We find X-ray polarization across the PWN, with B field vectors generally aligned with filamentary X-ray structures. High significance polarization is seen in arcs surrounding the pulsar and toward the end of the `jet', with polarization degree PD>70%, thus approaching the maximum allowed synchrotron value. In contrast, the base of the jet has lower polarization, indicating a complex magnetic field at significant angle to the jet axis. We also detect significant polarization from PSR B1509-58 itself. Although only the central pulse-phase bin of the pulse has high individual significance, flanking bins provide lower significance detections and, in conjunction with the X-ray image and radio polarization, can be used to constrain rotating vector model solutions for the pulsar geometry.Comment: To appear in the Astrophysical Journa

    Polarized blazar X-rays imply particle acceleration in shocks

    Get PDF
    Most of the light from blazars, active galactic nuclei with jets of magnetized plasma that point nearly along the line of sight, is produced by high-energy particles, up to around 1 TeV. Although the jets are known to be ultimately powered by a supermassive black hole, how the particles are accelerated to such high energies has been an unanswered question. The process must be related to the magnetic field, which can be probed by observations of the polarization of light from the jets. Measurements of the radio to optical polarization—the only range available until now—probe extended regions of the jet containing particles that left the acceleration site days to years earlier1,2,3, and hence do not directly explore the acceleration mechanism, as could X-ray measurements. Here we report the detection of X-ray polarization from the blazar Markarian 501 (Mrk 501). We measure an X-ray linear polarization degree ΠX of around 10%, which is a factor of around 2 higher than the value at optical wavelengths, with a polarization angle parallel to the radio jet. This points to a shock front as the source of particle acceleration and also implies that the plasma becomes increasingly turbulent with distance from the shock

    Discovery of X-ray polarization angle rotation in active galaxy Mrk 421

    Full text link
    The magnetic field conditions in astrophysical relativistic jets can be probed by multiwavelength polarimetry, which has been recently extended to X-rays. For example, one can track how the magnetic field changes in the flow of the radiating particles by observing rotations of the electric vector position angle Ψ\Psi. Here we report the discovery of a Ψx\Psi_{\mathrm x} rotation in the X-ray band in the blazar Mrk 421 at an average flux state. Across the 5 days of Imaging X-ray Polarimetry Explorer (IXPE) observations of 4-6 and 7-9 June 2022, Ψx\Psi_{\mathrm x} rotated in total by 360\geq360^\circ. Over the two respective date ranges, we find constant, within uncertainties, rotation rates (80±980 \pm 9 and 91±8/day91 \pm 8 ^\circ/\rm day) and polarization degrees (Πx=10%±1%\Pi_{\mathrm x}=10\%\pm1\%). Simulations of a random walk of the polarization vector indicate that it is unlikely that such rotation(s) are produced by a stochastic process. The X-ray emitting site does not completely overlap the radio/infrared/optical emission sites, as no similar rotation of Ψ\Psi was observed in quasi-simultaneous data at longer wavelengths. We propose that the observed rotation was caused by a helical magnetic structure in the jet, illuminated in the X-rays by a localized shock propagating along this helix. The optically emitting region likely lies in a sheath surrounding an inner spine where the X-ray radiation is released
    corecore