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Abstract: The paper describes the development and validation of a novel computational fluid
dynamics (CFD)-based throughflow model. It is based on the axisymmetric Euler equations with
tangential blockage and body forces and inherits its numerical scheme from a state-of-the-art CFD
solver (TRAF code). Secondary and tip leakage flow features are modelled in terms of Lamb–Oseen
vortices and a body force field. Source and sink terms in the governing equations are employed to
model tip leakage flow effects. A realistic distribution of entropy in the meridional and spanwise
directions is proposed in order to compute dissipative forces on the basis of a distributed loss model.
The applications are mainly focused on turbine configurations. First, a validation of the secondary
flow modelling is carried out by analyzing a linear cascade based on the T106 blade section. Then, the
throughflow procedure is used to analyze the transonic CT3 turbine stage studied in the framework
of the TATEF2 (Turbine Aero-Thermal External Flows) European program. The performance of the
method is evaluated by comparing predicted operating characteristics and spanwise distributions of
flow quantities with experimental data.

Keywords: Computational fluid dynamics; Throughflow method; Secondary flows; Tip leakage flows

1. Introduction

The design process of multistage turbomachinery is based on the efficient use of the currently
available tools, such as one-dimensional meanline models, 2D or quasi-3D blade-to-blade, throughflow
and 3D viscous, steady, and unsteady analyses. Throughflow methods traditionally represent a key
tool for turbomachinery design. In preliminary stages, they are able to provide the designer with
realistic spanwise distributions of flow parameters. Classical tools are based on the radial equilibrium
concept [1] or the streamline curvature method [2]. Recently, numerical methodologies borrowed from
computational fluid dynamics (CFD) approaches have begun to be exploited to solve the axisymmetric
Euler [3] and Navier–Stokes [4] equations in the framework of time-marching throughflow solvers.
Although heavily dependent on empirical correlations for viscous losses and deviations, just like
traditional approaches, such methods have no major difficulties in dealing with subsonic, transonic,
or supersonic flow regimes. They are able to capture shock waves inside bladed or non-bladed
regions of the flow-path, thus providing a more realistic meridional flow field with respect to classical
methodologies. An example of successful predictions of supersonic flows in steam turbines and
aeronautical fans at design and off-design conditions is reported in [5].

With the progress in turbomachinery performance, optimization techniques aimed at controlling
the flow details have become increasingly important in any stage of the design process. There is a strong
industrial interest in improved tools in order to effectively accomplish this goal [6]. During the concept
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and first design phase, short preprocessing and computing times are desirable for parameter variations
and optimization of the machine architecture. However, in order to improve the effectiveness of
optimization techniques, it is important that the various design steps consistently fit into an organized
workflow which hierarchically integrates conceptual and preliminary design tools with complete
3D CFD analyses. The interest in extending the range of applicability of fast throughflow methods
while trying to reduce and smooth the gap with the successive design steps involving advanced CFD
analyses has led researchers to look for appropriate methodologies to include 3D effects in meridional
analysis tools. The works of Simon and Léonard [4] and Petrovic and Wiedermann [7] are only a few
examples of successful attempts to account for effects related to endwall boundary layers, secondary
flows, entropy radial redistribution, and tip leakage flows in throughflow approaches.

This work discusses the implementation and validation of novel models for secondary and tip
leakage flow effects in an axisymmetric Euler solver with tangential blockage and body forces for
turbomachinery applications, which inherits its numerical scheme from a state-of-the-art CFD solver
(TRAF code [8]). The body force field needed to provide the flow turning by the blade rows is computed
explicitly from the flow tangency condition to the S2 streamsurface (i.e., Wu [9]). A novel adaptive
formulation for the flow surface is employed in order to accommodate incidence and deviation
effects [5]. Losses are introduced via dissipative forces which are expressed on the basis of a distributed
loss model. Secondary flows are modelled as additional 3D flow features associated with the vortices
that are created when the non-uniform inlet flow is turned by the blade rows. They are accounted
for via a transverse velocity field which—in a circumferentially-averaged sense—is assumed to be
represented by Lamb–Oseen-type vortices. Tip leakage effects for unshrouded blades are modeled
in terms of source and sink convective terms in a way that ensures mass and energy conservation.
Secondary and tip leakage losses are provided via correlations.

The effectiveness of the methodology is assessed by studying a linear cascade based on the
T106 blade section and the CT3 transonic turbine stage analyzed in the framework of the TATEF2
(Turbine Aero-Thermal External Flows) European program. The linear cascade was extensively studied
in a high-speed wind tunnel with both parallel and tapered endwalls by Duden and Fottner [10].
The availability of detailed measurements of flow angle and loss distributions makes it a very
interesting test case for the secondary flow modellization. For the turbine stage, measurements are
available for three different operating conditions. Transonic flow regime, low aspect ratio blades, and
rotor tip clearance makes it an interesting and challenging configuration for assessing the capabilities
of the throughflow procedure. The comparison between throughflow predictions and experimental
data will be discussed in terms of predicted performance and spanwise distributions of flow quantities.

The paper focuses on turbines, but the proposed methodology can easily be extended to treat
compressors cases as well.

2. Governing Equations and Numerical Scheme

The unsteady Euler equations have been circumferentially-averaged to obtain a formulation for
meridional (S2) streamsurface, and they account for blade blockage and body forces. The governing
equations are written (in conservative form) in cylindrical coordinates, and then mapped on
a curvilinear body-fitted coordinate system ξ, η:

∂bJ−1U
∂t

+
∂bJ−1F

∂ξ
+

∂J−1G
∂η

= bJ−1S + J−1Sb + J−1S f (1)

where U is the conservative variables vector, and F and G are the inviscid flux vectors. For example,
in the ξ direction:

F =
[
ρU, ρUu + pξx, ρUv + pξy, ρUw, ρuH

]T (2)
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On the right hand side:

S =
[
−ρv,−ρuv, ρw2 − ρv2,−2ρvw,−ρvH

]T
(3)

is a source term vector arising from the formulation of the Euler equations in cylindrical
coordinates, while:

Sb =

[
0, p

∂b
∂x

, p
∂b
∂r

, 0, 0
]T

, S f = [0, ρ fx − ρdx, ρ fr − ρdr, ρ fθ − ρdθ , ρ ( fθ − dθ)ωr]T (4)

represent the source term vectors which account for the variation of tangential blockage in the blade
passage, and for the components of the body forces f = [ fx, fr, fθ ]

T , and d = [dx, dr, dθ ]
T . The vector f

arises from the circumferential averaging procedure and represents the force exerted on the flow by
the blade row. The vector d represents a dissipative force which is explicitly introduced in the Euler
equations in order to model viscous losses.

The throughflow code inherits its numerical scheme from the steady release of the TRAF code [8].
The system of governing Equation (1) is solved for density, absolute momentum components, and total
energy via a time-marching methodology. The space discretization is based on a cell-centered finite
volume scheme. The artificial dissipation model available in the code is the one introduced by
Jameson et al. [11]. The system of governing equations is advanced in time using an explicit four-stage
Runge–Kutta scheme. Residual smoothing, local time-stepping, and multigridding are employed to
speed-up convergence to the steady state solution.

3. Blade and Dissipative Body Force Model

The blade body force field is intended to produce flow turning in the relative frame of reference,
without generating losses. It is then assumed to be orthogonal to the flow surface and null in
non-bladed regions. The blade body force intensity can be determined by requiring that it produces
the same flow deflection which would be provided by the actual blades. This is equivalent to the
assumption that the deflection of the S2 streamsurface—which represents the average path of the
flow—is equal to the one of the mean surface (camber surface) of the blade. In analysis problems,
the blade mean surface can be obtained from the real blade geometry in the functional form: ϑ = Γ(x, r),
or, equivalently, in the implicit form: ϕ(x, r, ϑ) = ϑ − Γ(x, r). The blade force components can be
written as: fx = − f ∂Γ

∂x fr = − f ∂Γ
∂r fϑ = f

r .
The value w̃ of the relative tangential velocity required to obtain the correct flow deflection can be

obtained from the flow tangency condition to the mean blade surface in the relative frame of reference.
This condition can be expressed by nullifying the dot product between the relative velocity vector and
its normal unit vector which is proportional to the gradient of ϕ:

w̃ = Ωr + ur
∂Γ
∂x

+ vr
∂Γ
∂r

(5)

The body force magnitude f and the tangential velocity w̃ are related through the angular
momentum equation, which gives:

fϑr = f = u
∂rw̃
∂x

+ v
∂rw̃
∂r

(6)

Equations (5) and (6) allow a direct calculation of the blade body force field, once the blade
mean surface is known. Equation (6) can also be directly used for design purposes, when an angular
momentum distribution r · w̃(m, r) is typically prescribed between blade row inlet and outlet.
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In the actual operation of turbomachines, the flow direction at the inlet and outlet of a given blade
row does not follow the camberline angle at the airfoil leading and trailing edge due to incidence and
deviation effects. As a consequence, the actual stream surface does not coincide with the mean blade
surface, and their differences due to incidence and deviation must be accommodated with a suitable
treatment. In the present work, the adaptive formulation for the mean streamsurface proposed in [5]
is employed.

Viscous losses are introduced in the system of Equation (1) via a distributed loss model. According
to this, a dissipative force per unit volume d is added to the source term vector (4). Such a force
is assumed to be aligned with the flow and opposite to it, so that it only results in loss generation.
The correspondent entropy increase can be related to the dissipative force via Crocco’s theorem:

d = T∇s · t (7)

where t is the unit vector tangent to the streamline.
The entropy rise across a blade row is computed via loss correlations. It is then distributed

along streamlines by using a distribution that closely follows the ones predicted by viscous,
three-dimensional, CFD calculations [5].

4. Secondary Flow Model

Secondary flows are modelled as additional 3D flow features associated with the vortices that
are created when then non-uniform inlet flow is turned by the blade rows. They are accounted for
in the throughflow procedure via a transverse velocity field and an additional loss distribution.
When circumferentially averaged, the transverse velocity field is assumed to be represented by
Lamb–Oseen-type vortices. The Lamb–Oseen vortex is an analytical solution of the Navier-Stokes
equations with an axisymmetric distribution for the swirl velocity and zero radial and axial components.
In polar coordinates, the tangential velocity as a function of the time t and the distance from the vortex
centre r is expressed as:

vϑ =
Γ

2πr

[
1− e−(

r
4νt )

2
]

(8)

One can overcome the explicit dependence on time by introducing a characteristic vortex core
radius z0 =

√
4νt which increases with time as a result of the diffusion of vorticity and shear stresses.

In this work, the circumferentially averaged secondary velocity and vorticity are considered in
the intrinsic relative coordinate system (s, n, h) (Hawtorne et al. [12], Figure 1a) and expressed as
components w′n and ω′s, respectively, given by:

w′n(ζ) =
Γ

2πz0ζ

{
1− e−ζ2

}
, ωs(ζ) =

Γ
πz2

0
e−ζ2

(9)

where ζ = (h− z0)/z0, and h is measured as the spanwise distance from the endwalls. The vortex
characteristic length z0 (Figure 1b) is estimated at the blade trailing edge as a fraction of the secondary
flow penetration depth in the spanwise direction Z: z0 = c1Z. The value of Z is estimated by using
the Benner et al. correlation [13]. A value of 0.12 has been chosen for the constant c1 on the basis of
numerical experiments and comparison with 3D CFD results (Figure 2). Inside the blade passage,
the characteristic length z0 is distributed linearly along the blade meridional length from the minimum
blockage factor location up to the trailing edge. The circulation Γ can then be expressed in terms of the
vorticity at the vortex centre ω′s = ωs(0) as: Γ = πω′sz2

0. The vorticity component ω′s is assumed to be
coincident with the streamwise vorticity of the passage vortex. This is evaluated using the classical
secondary flow theory (Hawthorne et al. [12]). However, it must be noted that in this theory such
a vorticity contribution is considered as distributed in the blade passage and not concentrated at the
vortex centre, as in the present approach. The secondary velocity component given by Equation (9)
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is finally projected in the tangential direction to obtain a tangential velocity w̃′ which is then used in
Equation (6) to generate an additional body force. This provides the secondary deviation distribution.

(a) (b)

Figure 1. (a) Sketch of a blade row with the intrinsic coordinate system; and (b) Lamb–Oseen vortex
and secondary velocities.

Secondary losses are estimated via correlations like the ones by Benner et al. [13] or Kacker and
Okapuu [14]. Secondary loss coefficients are converted in entropy rise values ∆s′, where local flow
conditions at the endwalls are used for this purpose. Such values are then distributed in the spanwise
direction so that the integral average of the distribution corresponds to ∆s′, and the resulting entropy
field is used for the distributed loss model. To this end, the following distribution function is used:

Φ(ζ) =

{
1
ζ2

[
1− (1 + ζ2)e−ζ2

]}2
(10)

In practice, the function Φ is normalized with its integral value between the endwall and midspan
and multiplied by ∆s′. It was found that Equation (10)—which is suggested by the behaviour of
the dissipation in a Lamb–Oseen vortex—closely matches the results of viscous three-dimensional
CFD calculations. In fact, several parametric studies were carried out in order to check the behaviour
of the function Φ and to determine the optimum value of the proportionality constant c1 between
the vortex characteristic length z0 and the Benner et al. secondary flow penetration depth Z [13].
An example of these studies is summarized in Figure 2, where 3D CFD results are compared to
throughflow predictions in terms of secondary deviation angle and loss coefficient. These quantities
are defined as the difference between the actual flow quantities and the corresponding ones that would
be obtained without secondary flow effects. Secondary losses are estimated with the Kacker–Okapuu
correlation [14]. Results obtained with several values of the constant c1 are reported.
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(a) (b)

Figure 2. Comparisons between 3D computational fluid dynamics (CFD) and throughflow results
in terms of spanwise distributions of (a) secondary deviation angle [deg] and (b) loss coefficient for
different values of the c1 constant.

5. Tip Leakage Model

In principle, tip clearance effects could be accounted for in the throughflow procedure in
a fashion similar to that of secondary flows. Unfortunately, the correlations available for the tip
vortex penetration depth in the spanwise direction and for the induced loss in flow turning by the
blade row are characterized by a high level of empiricism and unsatisfactory agreement between
different formulations (e.g., [15,16]). Therefore, it was decided to model tip leakage effects in terms of
source and sink flux vectors and additional losses.

The sink and source terms are conceived in a form that conserves mass and energy while
changing the momentum components in order to mimic tip leakage effects. They are introduced in the
streamwise row of computational cells adjacent to the tip endwall in rotor blades. The height of those
cells is enforced to be equal to the tip gap height by the grid generation procedure. For a computational
cell in the tip gap, the total flux contribution in the ξ direction of the computational plane becomes
F −F ∗sink +F

∗
source with:

F ∗ = {ρ∗U∗ , ρ∗U∗u∗ , ρ∗U∗v∗ , ρ∗U∗w∗ , ρ∗U∗H∗} (11)

where F is defined in Equation (2) while F ∗ are source/sink flux vectors. An analogous formulation
holds for the flux contribution in η direction.

The leakage mass flow rate is specified for the sink terms, while values of pressure and temperature
are assumed equal to those of the main flow. For the source terms, the mass flow rate and the direction
of the leakage flow are specified. This is assumed to be normal to the camber line of the tip section of
the blade. Pressure is assumed to be equal to that of the main flow while the temperature is calculated
so as to ensure energy conservation. The leakage mass flow rate through a tip clearance cell of area A
is expressed by the formulation suggested by Denton [17] in the limit of incompressible leakage flow:
ṁ∗ = cd A

√
2ρ∆p. In this formula, cd is a discharge coefficient which is estimated with the correlation

by Yaras and Sjolander [16], and ∆p is the pressure difference between the pressure and the suction
side of the blade tip section. Such a quantity is related to the tangential component of the local blade
body force, and it is estimated as: ∆p = (2πr/N)ρb fϑ. The blade body force components are set to
zero in the tip gap cells.

The tip leakage losses are computed from correlations and expressed in terms of entropy rise.
These contributions are distributed linearly along the blade axial chord. In order to define a distribution
in the spanwise direction, it is assumed that losses are concentrated where tip leakage effects are
important. To identify these regions of the computational domain, a function of the spanwise coordinate
is constructed as follows:
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T(h) = | w
w̃ + w̃′

| − 1 (12)

where w̃ and w̃′ are given by Equations (5) and (9), respectively. Far from the tip gap-affected region,
the tangential velocity component w is equal to w̃ + w̃′ due to the action of the body forces, and T = 0.
Where the tangential momentum is modified by the effects of the source terms of Equation (11), w is
different from w̃ + w̃′ and T > 0. As an example, contours of the T function and entropy distribution
at the CT3 rotor trailing edge (see the following section) are reported in Figure 3.

Figure 3. Tip clearance loss distribution and entropy at the trailing edge of the CT3 rotor.

6. Applications

6.1. T106 Cascade

The linear cascade under investigation is based on the T106 blade section, and was tested
experimentally by Duden and Fottner [10] in a high speed wind tunnel in two configurations: one
with parallel end walls and one with divergently tapered end walls. Due to the evidence of stronger
secondary flow, the configuration discussed here is the tapered one. For the meridional analysis of
linear cascades, the governing equations were recasted in a suitable form: the axisymmetric terms
were dropped out, while blockage and body force source terms were reformulated and retained.
The blade mean surface and the blockage distribution were obtained from the three-dimensional
geometry of the cascade. The meridional channel was discretized with 120 grid cells in the axial
direction, with 64 cells in the blade passage. Due to the symmetrical geometry of the endwalls
and inlet conditions, only half of the blade height was considered, and it was discretized with
64 spanwise cells. Inlet boundary layer thicknesses and vorticity were deduced from the spanwise
velocity distribution measured upstream of the cascade. They were used for the correlations by Benner
et al., and Kacker–Okapuu for the secondary flow penetration depth and loss coefficient [13,14] and
in the Hawthorne formula [12] for the streamwise vorticity at the trailing edge. The capability of the
secondary flow model to produce realistic spanwise distributions can be appreciated in Figure 4, where
computed secondary deviation and total pressure loss coefficient are compared to experiments. The
experimental deviation distribution is quite well reproduced by the throughflow analysis. A secondary
flow model with only one vortex cannot account for non symmetric effects, and for the analyzed
configuration, this results in an underestimation of the flow underturning near the 15% of the blade
span. The prediction by the Benner et al. correlation for the spanwise penetration depth appears to be
quite accurate. In terms of total pressure loss coefficient, the prediction based on the correlation by
Kacker–Okapuu is in good agreement with measurements. Instead, the Benner et al. correlation results
in a serious underestimation of the loss peak which is recorded near the 15% of the span. The good
reproduction of the shape of the loss distribution is remarkable, except for the first 5% span where
the experimental results are affected by the endwall boundary layer, which is not accounted for in the
throughflow analysis.
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(a) (b)

Figure 4. Predicted and measured spanwise distributions of (a) secondary deviation angle [deg] and
(b) loss coefficient for the T106 cascade with tapered endwalls [10].

6.2. CT3 Transonic Stage

The CT3 high pressure stage was experimentally investigated at the von Kármán Institute
(Rhode-Saint-Genèse, Belgium) in the framework of the TATEF2 EU funded project [18]. The turbine
stage is composed of 43 cylindrical vanes and 64 unshrouded blades. A meridional view of the stage is
reported in Figure 5.

Three operating conditions were tested during the measurement campaign. They are indicated
as Nom (nominal), Low, and High conditions, and are characterized in Table 1 in terms of isentropic
Mach numbers at stator and rotor exit, and stage total pressure ratio. Detailed experimental data
were made available for Planes 1 and 3. The stage meridional channel was discretized with 256 grid
cells in the axial direction and 64 in the spanwise direction. A number of 64 grid cells was used in
the bladed regions of the computational domain. Profile deviations and losses were estimated via
the Kacker–Okapuu correlation. Measured spanwise distributions at Plane 1 were used as boundary
conditions and to determine the endwall boundary layers details for the secondary flow model. The
Benner et al. correlation for the penetration depth and the Kacker–Okapuu formulation for secondary
losses were used for the model closure. The mixing analysis proposed by Denton [17] was used to
express tip leakage losses.

In terms of radial distributions of flow quantities, throughflow results obtained at the Nom
condition with and without accounting for 3D effects are compared to experiments in Figure 6.
The 3D steady viscous CFD results obtained with the TRAF code are also reported for comparison.
The improvement in the predictions related to 3D flow features modeling is witnessed by a better
agreement with experimental data. The comparison with 3D CFD results also reveals a good
reproduction of the impact of three-dimensional effects on the meridional flow, even if spanwise
distributions calculated with the TRAF code are significantly more distorted. The distortions associated
with the strong secondary flow originating at the hub are not captured with the same accuracy for all
the flow quantities. For example, in the first 40% of the span, the agreement with measurements is
quite good in terms of flow angle, but discrepancies appear in terms of absolute Mach number and
total pressure. Similar conclusions can be drawn with reference to tip leakage effects. The predicted
overshoots in flow quantities near the tip endwall are satisfactorily reproduced in magnitude, but the
spanwise extent of such effects on Mach number and total pressure distributions looks underestimated
with respect to the experimental data. The flow overturning shown by measurements between the 60%
and the 80% of the span is not recorded by the throughflow analysis.

For the Low and High conditions, the level of agreement between throughflow predictions
and experiments is practically the same. For those conditions, the comparison between calculated
and measured radial distributions is shown in Figure 7. Relevant changes in the shape of the
flow angle distribution and in the magnitude of the tip leakage-induced distortion occur when
varying the stage expansion ratio. The realistic reproduction of such modifications—appreciable in
Figures 6 and 7—represents a remarkable merit of the proposed 3D flow features models.
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In terms of stage output power (W) and total-to-total efficiency (ηtt), the comparison between
computed and measured values is summarized in Table 2. Throughflow results with and without 3D
models are reported. The computed mass flow rate value is equal to 9.31 kg/s for all three investigated
operating conditions due to chocked flow in the vanes, and it is about 2% higher than the experimental
value of 9.15 kg/s.

Figure 5. Meridional view of the CT3 stage.

Table 1. Operating conditions for the CT3 stage.

M2,is M3,is pt1/pt3

Low 1.071 0.65 2.19
Nom 1.242 0.97 3.19
High 1.249 1.18 3.85

Low: low pressure ratio, Nom: nominal pressure ratio, High: high pressure ratio.

Figure 6. Predicted and measured spanwise distributions of flow quantities in Plane 3 for the CT3
stage at Nom condition with and without 3D effects (abs. flow angle expressed in [deg]).

Figure 7. Predicted and measured spanwise distributions of flow quantities in Plane 3 for the CT3
stage at High and Low conditions (abs. flow angle expressed in [deg]).
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Table 2. Measured and computed performance for the CT3 stage.

W (kW) ηtt

Low: Exp./ TF w 3D/ TF w/o 3D 713/737/746 0.933/0.9360/0.946
Nom: Exp./ TF w 3D/ TF w/o 3D 1003/1033/1047 0.891/0.9130/0.925
High: Exp./ TF w 3D/ TF w/o 3D 1108/1141/1155 0.889/0.9108/0.921

Low: low pressure ratio, Nom: nominal pressure ratio, High: high pressure ratio, Exp: experimental value,
3D: three-dimensional flow features.

The calculated power values are overestimated with respect to the experimental results. This is
not surprising due to the comparable overestimation in mass flow rate. However, the discrepancy
between predicted and measured values of the output power decreases from 4% to about 2% when
3D effects are accounted for in the throughflow analysis. The computed total-to-total efficiencies are
also on a higher level with respect to measurements, but the trend with the stage expansion ratio is
satisfactorily captured. This particular operating character of the CT3 stage has proven to be hardly
predictable with accuracy, even by 3D unsteady viscous analyses [18]. Note that 12 seconds were
needed to obtain a six decade drop of the root mean square (RMS) residuals in the throughflow analysis
of the CT3 stage on a Intel R© i7-4770 CPU @3.40 GHz (Dresden, Germany). A comparable convergence
level in a steady, 3D, viscous, parallel calculation with the TRAF code requires a computational time of
about half an hour on a reasonably coarse mesh.

7. Conclusions

The numerical results presented in the paper were aimed at assessing the feasibility of 3D
flow features simulation in the context of a throughflow approach based on the axisymmetric Euler
equations. Although the subject is not new, the proposed methodology attempts to address the
issue with simple phenomenological models that naturally fit into the CFD-based structure of
the throughflow solver. It is intended to provide a framework for the simulation of secondary
flows and tip leakage effects, while leaving the task of estimating losses and other required bulk
quantities to correlations. The treatment of secondary flows as transverse velocity fields generated
by Lamb–Oseen-type vortices plus a realistic spanwise entropy distribution has proven to result in
quite good secondary deviation and loss predictions on a linear cascade based on the T106 profile.
A tip leakage model for unshrouded blades based on source/sink convective flux terms is also
proposed. The two models—used in conjunction with fairly standard correlations for profile losses
and deviations—led to improved predictions of the circumferentially averaged flow structure of the
CT3 transonic stage. Calculated radial distributions of flow properties and stage performance were
found to be at least in qualitative agreement with experiments not only at design conditions, but
also when studying off-design trends. Non-negligible discrepancies are also found near the endwalls
in the radial distributions of some parameters. This would suggest that the discussed models are
too crude to correctly reproduce the complex mechanisms of spanwise redistribution occurring in
highly loaded low aspect ratio turbine stages. Nonetheless, it is believed that the performance of the
proposed methodology is in line with the requirements of fast engineering predictions for the design
of axial turbines.
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Nomenclature

Latin Symbols
A tip gap area
b tangential blockage factor

b = ϑPS−ϑSS
2π/N

cd tip leakage discharge coefficient
d dissipating body force
F ,G inviscid flux vectors
f blade body force
H specific total enthalpy
J Jacobian
M Mach number
m meridional coordinate
ṁ mass flow rate
N number of blades
p pressure
R gas constant
r radius
S source term vector
s specific entropy
s, n, h intrinsic coordinates
T absolute temperature,

leakage loss distribution function
t time
u axial velocity
U ,V contravariant velocities in ξ and η directions
v radial velocity
W power
w tangential velocity
x, r, ϑ cylindrical coordinates
Z secondary flow penetration depth
z0 vortex characteristic length

Greek Symbols
Γ vortex circulation, streamsurface
η efficiency
ζ normalized spanwise coordinate,

loss coefficient, ζ =
pt1−pt2
pt2−p2

ν kinematic fluid viscosity
ξ, η curvilinear coordinates
ρ fluid density
Φ secondary loss distribution function
Ω angular velocity
ω vorticity

Subscripts
1, 2 cascade inlet, outlet
b blockage-related
f force-related
is isentropic
PS pressure side
re f reference
SS pressure side
t total quantity

Superscripts
T transposed

Abbreviations
CFD Computational Fluid Dynamics
EU European Union
RMS Root Mean Square
TATEF2 Turbine Aero-Thermal External Flows
TF Throughflow
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