98 research outputs found

    Application of hydrogen peroxide to the control of eutrophic lake systems in laboratory assays

    Get PDF
    We exposed water samples from a recreational lake dominated by the cyanobacterium Planktothrix agardhii to different concentrations of hydrogen peroxide (H2O2). An addition of 0.33 mg·L−1 of H2O2 was the lowest effective dose for the decay of chlorophyll-a concentration to half of the original in 14 h with light and 17 h in experiments without light. With 3.33 mg·L−1 of H2O2, the values of the chemical oxygen demand (COD) decreased to half at 36 and 126 h in experiments performed with and without light, respectively. With increasing H2O2, there is a decrease in the total and faecal coliform, and this effect was made more pronounced by light. Total and faecal coliform were inhibited completely 48 h after addition of 3.33 mg·L−1 H2O2. Although the densities of cyanobacterial cells exposed to H2O2 did not decrease, transmission electron microscope observation of the trichomes showed several stages of degeneration, and the cells were collapsed after 48 h of 3.33 mg·L−1 of H2O2 addition in the presence of light. Our results demonstrate that H2O2 could be potentially used in hypertrophic systems because it not only collapses cyanobacterial cells and coliform bacteria but may also reduce chlorophyll-a content and chemical oxygen demand.Fil: Bauzá, Letizia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas; ArgentinaFil: Aguilera, Anabella. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Biodiversidad y Biotecnología; Argentina. Fundación para Investigaciones Biológicas Aplicadas; ArgentinaFil: Etchenique, Roberto Argentino. Universidad Nacional de la Plata. Facultad de Ciencias Naturales y Museo. Division Ficología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Andrinolo, Dario. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas; ArgentinaFil: Giannuzzi, Leda. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas; Argentin

    Charge recombination reduction in dye-sensitized solar cells by means of an electron beam-deposited TiO2 buffer layer between conductive glass and photoelectrode

    Get PDF
    A thin anatase titanium dioxide compact film was deposited by electron beam evaporation as buffer layer between the conductive transparent electrode and the porous TiO2-based photoelectrode in dye-sensitized solar cells. The effect of such a buffer layer on the back transfer reaction of electrons to tri-iodide ions in liquid electrolyte-based cells has been studied by means of both electrochemical impedance spectroscopy and open circuit photovoltage decay analysis. The influence of the thickness has been also investigated and an increment in overall quantum conversion efficiency eta as high as +31% with respect to the standard cell - fabricated onto an uncoated conductive glass - has been revealed in the case of a 120 nm thick buffer layer. (C) 2010 Elsevier B.V. All rights reserve

    Novel Preparation Method of TiO2-Nanorod-Based Photoelectrodes for Dye-Sensitized Solar Cells with Improved Light-Harvesting Efficiency

    Get PDF
    We present a novel, facile, and cost-effective method to prepare highly transparent mesoporous films made by anatase TiO2 nanorods that have been synthesized by a single-step solvothermal process. Such nanorods have been conveniently used as prepared-without completely removing the residual organics-to obtain suitable screen-printable paste by means of the use of proper polymeric binders. This method has been successfully implemented to fabricate highly efficient nanorod-based photoelectrodes for dye-sensitized solar cells. They showed an increment of the overall quantum conversion efficiency comprised between 34% and 58% with respect to cells based oil commercial P25 titanium dioxide nanoparticles. In particular, a maximum photocurrent density and solar conversion efficiency of 16.9 mA/cm(2) and 7.9% have been obtained, respectively

    Electronic transport, ionic activation energy and trapping phenomena in a polymer-hybrid halide perovskite composite

    Get PDF
    Abstract The exploitation of methylammonium lead iodide perovskite-polymer composites is a promising strategy for the preparation of photoactive thin layers for solar cells. The preparation of these composites is a simple fabrication method with improved moisture stability when compared to that of pristine perovskite films. To deepen the understanding of the charge transport properties of these films, we investigated charge carrier mobility, traps, and ion migration. For this purpose, we applied a combinatory measurement approach that proves how such composites can still retain an ambipolar charge transport nature and the same mobility values of the related perovskite. Furthermore, thermally stimulated current measurements revealed that the polymer influenced the creation of additional defects during film formation without affecting charge mobility. Finally, impedance spectroscopy measurements suggested the addition of starch may hinder ion migration, which would require larger activation energies to move ions in composite films. These results pave the way for new strategies of polymer-assisted perovskite film development

    Effect of surface tension and drying time on inkjet-printed PEDOT:PSS for ITO-free OLED devices

    Get PDF
    Abstract Highly conductive PEDOT:PSS is one of the most promising materials for indium tin oxide (ITO) substitution in printed electronics. Here, we report the development and optimisation of two PEDOT:PSS ink formulations for the fabrication of inkjet-printed transparent conductive layers. Starting from aqueous commercial solutions, co-solvents and a non-ionic surfactant were employed to modify the surface tension, improve the wetting capability of the ink, and obtain uniform and homogeneous thin films. In particular, the quantities of ethanol and surfactant were systematically adjusted to determine the optimal conditions for inkjet printing. The results demonstrate that a surface tension value between 28 and 40 mN/m and approximately 40 vol.% of a low-boiling-point co-solvent are fundamental to ensure the proper wetting of the glass substrate and a quick-drying process that confers uniformity to the printed thin film. The printed PEDOT:PSS thin films show good morphological, optical, and electrical properties that are similar to those observed for the corresponding spin-coated layers. The organic light-emitting diodes (OLEDs) fabricated with the inkjet-printed PEDOT:PSS electrodes showed a maximum quantum efficiency of 5.5% and maximum current efficiency of 15 cd/A, which is comparable to spin-coated reference devices. These results demonstrate the great potential of polymeric electrodes for the fabrication of high-efficiency printed OLED devices that are compatible with flexible and stretchable substrates

    An Original Educational Algorithm Assessing the Behaviours of Angular Frequency Deviations of a Multimachine System in Small Signal Analysis

    Get PDF
    The paper presents a fully self-implementable algorithm that has demonstrated to be an effective tool for power education at the University of Padova-Department of Industrial Engineering. It deals with the small signal analysis of the electromechanical transients of a multimachine system. The algorithm allows analytically building both the state matrix and the input matrix. Moreover, by exploiting the matrix exponential, the angular frequency deviations of synchronous generators can be computed and plotted so to help students to evaluate transient stability. Besides the full exposition of the algorithm, the paper presents a comparison between a self-implemented linearized dynamic in Matlab environment and the dynamic simulation obtained by the commercial software DIgSILENT PowerFactory

    High colouring efficiency, optical density and inserted charge in sol–gel derived electrochromic titania nanostructures

    Get PDF
    A pure TiO2 thin film (100–120 nm) was made from a green aqueous sol–gel precursor on FTO glass and calcined at 430 °C. It was a mix of amorphous, anatase, rutile and brookite TiO2 phases, and exhibited very good electrochromic properties over visible and NIR wavelengths with an applied bias of +0.1 V to −1.5 V. It was highly transparent showing excellent coloration with applied voltage, with transmittance modulation (ΔT) = 69.7% at 550 nm, 86% at 700 nm and an overall ΔT between 400–1650 nm of 60%, giving a very large change in optical density (ΔOD) of 1.4 at 550 nm and 2.4 at 700 nm. Cyclic voltammograms had typical peaks for TiO2 at −1.3 V for colouration and −0.9 V for bleaching, with a high separation of 0.37 V between peaks, and a charge density after charging for 25 min of Qc = 50 mC cm−2. After only 60 s and 120 s at −1.5 V, inserted charge values of 17.6 and 22 mC cm−2 were observed, leading to a high colouration efficiency (CE) of 55.9 cm2 C−1 at 550 nm. These ΔOD, ΔT, Qc and CE values are superior to any previously reported for crystalline sol–gel TiO2 films. They also possessed rapid switching times for bleaching and colouring of τb90% = 10 s and τc90% = 55 s, comparable to the best previously reported sol–gel anatase-based TiO2 films. This makes this nanomaterial an excellent candidate for smart windows and other electrochromic devices and applications

    [Standards and outcome measures in cardiovascular rehabilitation. Position paper GICR/IACPR].

    Get PDF
    Despite major improvements in diagnostics and interventional therapies, cardiovascular diseases remain a major health care and socio-economic problem in Italy. Costs and resources required are increasing in close correlation to both the improved quality of care and to the population ageing. There is an overwhelming evidence of the efficacy of cardiac rehabilitation (CR) in terms of reduction in morbidity and mortality after acute cardiac events. CR services are by definition multi-factorial and comprehensive. Furthermore, systematic analysis and monitoring of the process of delivery and outcomes is of paramount importance. The aim of this position paper promoted by the Italian Association for Cardiovascular Prevention and Rehabilitation (GICR-IACPR) is to provide specific recommendations to assist CR staff in the design, evaluation and development of their care delivery organization. The position paper should also assist health care providers, insurers, policy makers and consumers in the recognition of the quality of care requirements, standards and outcome measure, quality and performance indicators, and professional competence involved in such organization and programs. The position paper i) include comprehensive CR definition and indications, ii) describes priority criteria based on the clinical risk for admission to both inpatient or outpatient CR, and iii) defines components and technological, structural and organizing requirements for inpatient or outpatient CR services, with specific indicators and standards, performance measures and required professional skills. A specific chapter is dedicated to the requirements for highly specialized CR services for patients with more advanced cardiovascular diseases
    • …
    corecore