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ABSTRACT The paper presents a fully self-implementable algorithm that has demonstrated to be an effective
tool for power education at the University of Padova-Department of Industrial Engineering. It deals with
the small signal analysis of the electromechanical transients of a multimachine system. The algorithm
allows analytically building both the state matrix and the input matrix. Moreover, by exploiting the matrix
exponential, the angular frequency deviations of synchronous generators can be computed and plotted so to
help students to evaluate transient stability. Besides the full exposition of the algorithm, the paper presents
a comparison between a self-implemented linearized dynamic in Matlab environment and the dynamic
simulation obtained by the commercial software DIgSILENT PowerFactory.

INDEX TERMS Electromechanical transient, linearized dynamic, power system dynamic, small signal
stability.

NOMENCLATURE
Symbol Quantity Units

State matrix -
A Synchronizing matrix -
A∗i Columns of Agrid -
Amm, Amr, Arm, Arr Self and mutual terms of

Agrid

-

Agrid Synchronizing matrix of
power flow grid

-

Agen Synchronizing matrix of
generators

-

αλ Load dependence by fre-
quency

p.u.

Input matrix -
c Fictitious line

capacitance p.u.l.
nF/km

cosϕ Generator power factor -

The associate editor coordinating the review of this manuscript and

approving it for publication was Lei Chen .

D Damping matrix -
d Damping coefficients -
δ1, δ2 Voltage arguments of 1 and

2 nodes
rad

δ⊕1 , δ
⊕

2 , δ
⊕
r , δ
⊕
m , δ
⊕
n Voltage phasor arguments

of 1, 2, r, m, n nodes in
steady-state regime

rad

dd Direct-axis damping coeffi-
cients

-

1δ(s) Voltage phasor angle devia-
tion in L-domain

rad

1δG Independent state variable of
the internal generator angle
deviations

rad

1δ
′

G Independent state variable of
the external generator angle
deviations

rad

1δi(t) Small argument increment of
i-th node

rad

1δL Independent state variable of
the load angle deviations

rad
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1δN Dependent state variable of
the neutral node angle devia-
tions

rad

1δr (t), 1δm(t) Argument increment on r and
m nodes

rad

1P Active power disturbance MW
1p(s) Nodal active power deviation

in L-domain
p.u.

1pacc(s) Accelerating power deviation
in L-domain

p.u.

1pD(s) Damping active power devia-
tion in L-domain

p.u.

1pi(s) Generator active power input
deviation in L-domain

p.u.

1p’’iG Independent state variable of
mechanical power due to the
speed governor action

p.u.

1piG(s) Column vector of the i-th gen-
erator mechanical power due
to the speed governor action

p.u.

dq Quadrature-axis damping
coefficients

-

1ω(s) Angular frequency deviation
in L-domain

rad/s

1ωG Independent state variable of
the internal generator angular
frequency deviation

rad/s

1ω
′

G Dependent state variable of
the external generator angular
frequency deviation

rad/s

1ωL Independent state variable of
the load angular frequency
deviation

rad/s

1ωmax Maximum value of angular
frequency deviation transient

rad/s

1ωreg Angular frequency deviation
in steady-state regime (after a
disturbance)

rad/s

1ωi(t) Small frequency increment on
i-th node

rad/s

1ωr (t), 1ωm(t) Frequency increment on r and
m nodes

rad/s

G Number of generator nodes -
g Regulating energy p.u.
G’ Number of generator internal

nodes
-

H(s) Regulation transfer function
matrix in L-domain

-

HG(s) Generator regulation transfer
function matrix in L-domain

-

H’G, H’’G, T−1 Utility diagonal matrices -
hiG The i-th diagonal component

of HG(s)
-

HL Load dynamic frequency
response matrix

-

H’L Utility diagonal matrix -
i⊕ Vector of current phasors in steady

state
p.u.

id Current phasor of the 2-port ele-
ment collapsed into 1-port ele-
ment.

p.u.

i⊕1i
Vector of current phasors with
argument perturbation on i-th
node

p.u.

im, ir Current phasors feeding m and r
ports

p.u.

ϑ Intermediate parameter for the
calculation of t1ωmax

red

ϑ12 = δ1, - δ2 rad
KR Regulating energy MW/Hz
L Number of load nodes -
λ The diagonal component of HL -
l Fictitious line inductance p.u.l. mH/km
LDPD Linearized Dynamic algorithm

presented in this paper by the
University of PaDova

M Inertia matrix -
m Intermediate parameter for the

calculation of 1ωmax

-

MG Generator inertia matrix -
MGTP Malta substation -
miG The i-th diagonal component of

MG

-

ML Load dynamic behaviour matrix -
mλ Coefficients ofML -
N Number of other nodes -
nd Complex power of the 2-port ele-

ment collapsed into 1-port ele-
ment

p.u.

n⊕1i
Vector of complex power with
argument perturbation on i-th
node

p.u.

nG Generator complex power p.u.
nm Complex power at m port p.u.
p1, p2 Active power transit in 1 and

2 nodes
p.u.

pcost Constant component of pm p.u.
pd Damping power p.u.
PF DIgSILENT PowerFactory soft-

ware
-

pg Generated active power p.u.
pλ Load active power p.u.
pm Active power at m port p.u.
PSicily Total active power absorbed in

Sicily
MW

Qd Load share with a dynamic depen-
dence by the frequency

-

Q1, Q2, Q3
Q4, Q5, Q6 Utility sub-matrices -
Qs Load share with a static depen-

dence by the frequency
p.u.
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R Exponential matrix -
r Fictitious line resistance p.u.l. �/km
σ Frequency droop -
Sn Generator apparent power MW
T1, TR Main regulation time constants s
Tas Load stating time s
t ′d Direct-axis transient time con-

stant
s

T ′′d0 Direct-axis sub-transient
open-circuit time constant

s

t1ωmax Time instant when maximum
value of angular frequency devi-
ation transient occurs

s

Tia The i-th Turbine+generator
starting time

s

TH THeoretical calculations
TSO Transmission System Operator
t ′q Quadrature-axis transient time

constant
s

T ′′q0 Quadrature-axis sub-transient
open-circuit time constant

s

u(s) Column vector of the power dis-
turbances

p.u.

v′1 Voltage behind transient reac-
tance

p.u.

v1, v2 Voltage magnitude of internal
and external generator nodes

p.u.

v⊕1 , v
⊕

2 , v
⊕
n Components of vector v⊕ p.u.

v⊕ Vector of node voltage phasors in
steady state

p.u.

v⊕ Vector of voltage phasors in
steady state

p.u.

vd Voltage phasor of the 2-port ele-
ment collapsed into 1-port ele-
ment

p.u.

v⊕1i Vector of voltage phasors with
argument perturbation on i-th
node

p.u.

vm, vr Voltage phasors of m and r ports p.u.
ω0 Characteristic pulse rad/s
ωn Nominal rated angular frequency rad/s
x Direct-axis synchronous reac-

tance
p.u.

x Column vector of the indepen-
dent state variables

-

ξ Damping factor -
ξas Load asynchronous portion p.u.
x(t) Time domain state equation

solution
-

x1 Column vector of the dependent
state variables

-

xd Direct-axis synchronous reac-
tance

p.u.

x ′d Direct-axis transient reactance p.u.
x ′′d Direct-axis sub-transient reac-

tance
p.u.

xq Quadrature-axis synchronous reac-
tance

p.u.

x ′q Quadrature-axis transient reactance p.u.
x ′′q Quadrature-axis sub-transient reac-

tance
p.u.

xt Step-up transformer reactance p.u.
Y Admittance matrix -
yd Shunt admittance of the 2-port ele-

ment collapsed into 1-port element
p.u.

ym, yr Shunt admittances of m and r ports p.u.

z Series impedance between m and r
ports

p.u.

ϕ Argument of z rad
ω⊕N Nominal angular frequency rad/s
ωr (t), ωm(t) Angular frequency of r and m

nodes
p.u.

ẋ Vector of state variables derivatives -
x Vector of state variables -
u Vector of inputs -
⊕ Superscript symbol denoting the

power flow results

I. INTRODUCTION
This paper is an enlarged, enriched, and detailed version
of [1].

The paper presents the research and education experiences
gained, in many years, at the Department of Industrial Engi-
neering of the University of Padova about the electromechan-
ical transients of multimachine systems. The power education
inside the Course of Power Systems Analysis has much bene-
fitted from these researches since the students can exploit the
didactical effectiveness of the linearized dynamic (or modal
or small signal stability analysis) in order to deeply under-
stand which parameters influence the small signal stability
the most.

Even if the topic is well covered in technical literature by
monumental books like J. Machowski [2], R. Marconato [3],
E.W. Kimbark [4], P. Kundur [5] and P. Anderson [6], the
paper seems to be very useful to the engineers and the students
who want to implement the present algorithm for:
• Analytically building the state matrix and the input
matrix ;

• Assessing the angular frequency deviations of the
generators in time domain by exploiting the matrix
exponential.

In fact, once built the state matrix , besides the obvious
possibility of computing its eigenvalues and the participa-
tion factors, the authors apply the technique to compute
and plot the angular frequency deviations in time domain
of the involved synchronous generators by means of the
matrix exponential. The state matrix approach for the study
of power system dynamic behaviour has been introduced by
Kundur in [7] and by Castrovilli-Marconato in [8] several
years ago. With the introduction of participation factors, the
‘‘Selective Modal analysis’’, presented in [9], overcomes the
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ambiguous relationship between modes and state variables
of the classical modal analysis. The ‘‘Lyapunov Modal anal-
ysis’’ proposed in [10], [11] characterizes contributions of
the system modes and state variables with their associated
integral energy on a finite or infinite time interval.

In the wide field of the modal analysis, the authors develop
a self-made matrix-based linearized approach for the study of
electromechanical oscillations. This method creates the state
matrix starting from Kundur formulations [7] but relying on
the principle of active power balance through all nodes of the
grid around an operation point. The starting operation point
is obtained by the calculation of a power flow, by exploiting
another open source code developed by R.B. in [12]. This
approach overcomes the classical modal analysis (even if
it is always possible to perform it) based on mode shapes,
eigenvalues and participation factors [13], and exploits the
matrix exponential in order to obtain and visualize the angular
frequency deviations of all the generators in time domain.
These further investigations allow quickly evaluating the sta-
bility of the system without resorting to a deep study of the
state matrix . Some parts of the algorithm have been already
presented by R.B. in [1], [14], [15], but in this paper it is
completely generalized and enriched also with a compari-
son between the angular frequency deviations obtained by
the present linearized algorithm and the dynamic simulation
obtained by the commercial software PF. This comparison is
not performed to necessarily show the agreement between the
two methods - which are based on two different mathematical
models– but to draw conclusions by means of the results of
two methods. The former (PF) solves the whole set of the
differential algebraic equations and the latter (LDPD) solves
the linear system obtained by the linearization around an
operation point.

In order to further validate the results, final behaviours
are also compared with the calculations of the theoretical
frequency deviations developed in [16]. The main purpose
of this paper is to show an original educational state-space
approach which uses a unique choice of the state variables
based on the active power balance: this approach is useful to
better understand the power exchanges – and so the angular
frequency deviations – between generators and loads in a
multi-machine electrical power system.

At Electrical Engineering of the University of Padova,
students implement this algorithm in Matlab environment
but other math-packages are possible. The effectiveness of
this matrix educational approach is that, at the same time,
the students learn about small signal stability analysis, make
their own-implementation, transfer power system data and are
encouraged to make their own comparisons and considera-
tions. All these skills are fundamental for the engineers of the
future power systems. Furthermore, the comparison between
self-made linearized Matlab-implemented algorithm and PF
can benefit from an interface procedurewhich has been devel-
oped in recent years. Even if it is not the topic of the paper,
the paper gives some details of this interface procedure in the
Appendix. With regard to the future researches, the authors

FIGURE 1. Vector representation of voltage phasors for small active
power variations (subscripts r and m indicate an internal and an external
node of a generator respectively).

are attempting to includeHVDC links into the algorithm,with
the aim of extending the range of its applicability [17]–[21].

II. ANALYTICAL FORMATION OF A AND B MATRIX
The main goal of a linearized dynamic study is to obtain the
coefficients of the two matrices namely the state one and
input one in (1)

ẋ = x+ u (1)

where x is a vector containing the state variables and u is
the vector of inputs. In this section, all the formulations
useful to analytically build the state matrix and the input
matrix are presented. In order to render the presentation
more easily explainable, all the matrices shown in the follow-
ing subsections refer to a benchmark grid (fully presented in
section V-A) composed of the following elements:
• 5 internal generator nodes 1÷5: G nodes;
• 5 external generator nodes 6÷10: G’ nodes;
• 8 load nodes 11 ÷ 18: L nodes;
• 4 other nodes 19 ÷22: N nodes.

Let us assume that the power system to be analysed is in
steady-state regime at the initial conditions. The algorithm
receives the input states from a single-phase power flow, from
which magnitude and argument of the nodal voltage phasors,
shown in (2), are obtained:

v⊕ =


v⊕1 e

jδ⊕1

v⊕2 e
jδ⊕2

...

v⊕n e
jδ⊕n

 (2)

where the superscript symbol ⊕ indicates the known
steady-state and 1: n are the number of nodes.

Then, active power disturbances of small amplitude are
injected into the network nodes. As a consequence, small
increments of 1δi (t) and 1ωi (t) are generated, assum-
ing that the voltage magnitudes remain constant at the
pre-disturbance value as shown in Fig. 1.

With these assumptions, the behaviour of the dynamic
system could be linearized around the operating conditions.
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FIGURE 2. Generic 2-port element.

A. THE SYNCHRONISING MATRIX A
The synchronising matrix relates the active power deviations
at each node with the voltage phasor angle deviations at each
node. The first step is obtaining the synchronising coeffi-
cients for a generic 2-port element, then the coefficients for
the generator and step-up transformer group are deduced, and
finally the total synchronizingmatrix is created, by exploiting
the primitive and incidence matrices.

It can be proved that if the system is linearised around
the steady-state condition, the matrix A holds the following
properties:

• its elements are constant;
• it is sparse;
• it is singular, i.e. det(A) = 0;
• it is symmetric.

Let us consider a generic 2-port element placed between
two generic ports m e r , as shown in Fig. 2.
The current feeding the m-port can be expressed as:

im =
(
y
m
+

1
z

)
vm +

(
−
1
z

)
vr (3)

then the complex power could be calculated as:

nm = v mi
∗

m =

(
y∗
m
+

1
z∗

)
v2m +

(
−

1
z∗

)
v mv

∗

r (4)

since the first addendum of (4) is constant with changes
in δm and δr angles, (4) cloud be reformulated as active
power:

pm = Re
(
nm
)
= pcost −

vmvr
z

cos (δm − δr + ϕ) (5)

The terms of the synchronizing matrix need the variation of
active power entered the m-node as a function of δm and δr
angles. In order to obtain that, the partial derivatives around
the break-even point should be evaluated as:

(
∂pm
∂δm

)⊕
= +

v⊕mv
⊕
r

z
sin
(
δ⊕m − δ

⊕
r + ϕ

)
= Amm(

∂pm
∂δr

)⊕
= −

v⊕mv
⊕
r

z
sin
(
δ⊕m − δ

⊕
r + ϕ

)
= Amr(

∂pr
∂δr

)⊕
= +

v⊕mv
⊕
r

z
sin
(
δ⊕m − δ

⊕
r + ϕ

)
= Arr(

∂pr
∂δm

)⊕
= −

v⊕mv
⊕
r

z
sin
(
δ⊕m − δ

⊕
r + ϕ

)
= Arm

(6)

In case of 2-port with only one shunt element, the proce-
dure is similar, and the complex power is obtained by (7).

nd = v d i
∗

d = v d
(
y∗
d
v∗d
)
= v2dy

∗

d
= n cost (7)

This means that all the elements that can be represented
by a shunt admittance, e.g. loads, do not explicitly contribute
to the calculation of the synchronizing coefficients. The most
challenging case for A coefficient calculation is that of the
generators.

A simplified transient model is adopted to repre-
sent each synchronous generator and each step-up trans-
former [2], [24]: this allows simplifying the analysis by
neglecting the sub-transient regime. According to this tran-
sient model, the generated active power can be expressed as
in (8):

pg =
v′1v2
x ′d + xt

sinϑ12 +
v22
2

x ′d − xq(
x ′d + xt

) (
xq + xt

) sin2ϑ12 (8)

considering the two nodes 1 and 2, where 1 indicates the
generator internal fictitious node and 2 indicates the network
interface node. Equation (8) is derived with the following
assumptions:
• xq ≡ x ′q;
• Absence of active power loss;
• v′1 is the voltage behind the transient reactance;
• v2 is the terminal voltage;
• ϑ12 = δ1 − δ2.
The values of v′1, v2 and ϑ12 are obtained from the prelim-

inary (and always necessary) power flow study of the whole
system. Under the assumption of absence of power losses, the
relation (9) yields

p2 = −p1 (9)

Consequently, the derivatives of (8) with respect to the
angles δ1 and δ2 are given by (10) i.e.:

∂p1
∂δ1
=

v′1v2
x ′d+xt

cosϑ12+v22
x ′d−xq(

x ′d+xt
) (
xq+xt

)cos2ϑ12=A11
∂p1
∂δ2
=−

v′1v2
x ′d+xt

cosϑ12−v22
x ′d−xq(

x ′d+xt
) (
xq+xt

)cos2ϑ12=A12
∂p2
∂δ2
=

v′1v2
x ′d+xt

cosϑ12+v22
x ′d−xq(

x ′d+xt
) (
xq+xt

)cos2ϑ12=A22
∂p2
∂δ1
=−

v′1v2
x ′d+xt

cosϑ12−v22
x ′d−xq(

x ′d+xt
) (
xq+xt

)cos2ϑ12=A21
(10)

It is worth noting that, in this case, the matrix is symmetric
since the absence of active power losses into the generator is
supposed.

The construction of the final synchronising matrix goes
through two different matrices. One named Agrid, whose
coefficients are obtained by (6), and one named Agen whose
coefficients are obtained by (10). The final synchronising
matrix A is obtained from the sum of the two matrices,
as shown in Fig. 3.
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A numerical derivation procedure to compute these two
matrices is implemented. This numeric procedure exploits
vector calculus to automatically compute the coefficients
in (6). Starting from the nodal voltage vector in (2), the cur-
rent and the complex power entering each node is obtained
from (11), by exploiting the grid admittance matrix Y.

i⊕ = Y v⊕

n⊕ = v⊕ × i⊕∗ (11)

A numerical increment of1δ is applied to the argument of
the i-th voltage phasor, obtaining (12) i.e.

v⊕1i =



v⊕1 e
jδ⊕1

v⊕2 e
jδ⊕2

...

v⊕i e
j(δ⊕i +1δ)

...

v⊕n e
jδ⊕n


(12)

Then the current and the apparent power are calculated
again with (13):

i⊕1i = Y v⊕1i
n⊕1i = v⊕1i × i

⊕∗

1i (13)

Eq. (14) finally calculates the first column of the matrix.

Re
(
n1i − n

⊕

1δ

)
=



∂p1
∂δi
...

∂pi
∂δi
...

∂pn
∂δi


= A∗i (14)

Similarly, the other columns are computed by applying the
voltage phasor argument increment to the remaining nodes.

The complete matrixA in Fig. 4 is obtained by applying the
superposition principle. It relates the nodal active power devi-
ations to the voltage phasor angle deviation following (15).

1p(s) = A1δ(s) = A
1ω(s)
s

(15)

The matrix A is always singular since any sum of
row-elements is null [4], [25].

B. DAMPING MATRIX D
The damping matrix D accounts for the presence of damping
windings in synchronous generators. It holds the damping
coefficients d , as shown in Fig. 5.
These elements d are computed by using the procedure

described by Kimbark [5], derived from Dahl [26] and Park,
and by expressing in network p.u. the generator parameters.
These coefficients are related to the presence of damping
windings, which act during the electromechanical transient

FIGURE 3. Matrix A of the synchronising coefficients obtained from the
blending of the two matrices Agrid and Agen.

FIGURE 4. Matrix A of the synchronising coefficients.

and change the power output as a function of the magnetic
flux variation according to (16):

pd = v22
[
dd sin2 δ + dq cos2 δ

]
·1ω = v22 · d ·1ω (16)

where coefficients dd and dq are equal to:

dd =

(
x ′d − x

′′
d

)
T ′′d0(

x + x ′d
)2

dq =

(
x ′q − x

′′
q

)
T ′′q0(

x + x ′q
)2 (17)

Moreover, since an infinite power network is considered,
the x term could be assumed equal to zero so that (17) can be
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FIGURE 5. Matrix D of the damping coefficients.

rewritten as:

dd =
x ′d − x

′′
d(

x ′d
)2 T ′′d0

dq =
x ′q − x

′′
q(

x ′q
)2 T ′′q0 (18)

Finally, these coefficients allow building the D matrix,
already shown in Fig. 2, which relates the power output vari-
ations due to the damping windings to the angular frequency
deviations, as in the following:

1pD (s) = D1ω (s) (19)

C. TURBINE + GENERATOR INERTIA COEFFICIENT
MATRIX M
ThematrixM is composed of 2 different matrices: one related
to the generator inertia (MG), and the other one related to
the load dynamic behaviour (ML). Each term of the diagonal
matrixMG is expressed as:

miG =
nG · cosϕ · Tia

ωn
(20)

with Tia [s] = i-th Turbine + Generator group starting time.
In order to compute both the state and the input matrices,
the model must be updated to consider also the load dynamic
behaviour: a sub-matrix ML accounts for load inertia coef-
ficients and a sub-matrix HL for dynamic load behaviour
(Fig. 6). Each term of the diagonal matrix ML is expressed
as in (21):

m` =
p` · ξas · Tas

ωn
(21)

with ξas the load asynchronous portion (e.g. 0.8 ÷ 0.9) and
Tas the starting time (e.g. 2 ÷ 3 [s]).

FIGURE 6. Matrix M of the inertia coefficients.

Eventually, the matrix in Fig. 6 is obtained: it relates the
accelerating power pacc to the derivative of the angular fre-
quency deviation as in (22):

1pacc (s) = M · s1ω (s) (22)

D. PRIME MOVER + SPEED REGULATION TRANSFER
FUNCTION MATRIX H(S)
The matrix H is composed of two different matrices: the
former is related to the generator regulation and prime mover
(HG), and the latter is related to the load dynamic frequency
response (HL). Each term of the diagonal matrix HG(s) is
expressed as in (23):

hiG = −g
1+ sT1
1+ sTR

· P(s) (23)

where T1 and TR are the main regulation constants of the
speed governor [22], P(s) is the prime mover transfer func-
tion obtained e.g. by [23], g = nG·cosϕ

σωn
, being nG cosϕ the

nominal active power [p.u.] of the i-th generator, σ [p.u.]
the corresponding speed governor droop, ωn [rad/s] the rated
angular frequency. In this paper, the authors assume the
contribution of the prime mover function as a unity gain,
in order to provide for a clearer formulation. They consider
didactically meaningful to let the students modify the prime
mover transfer function in order to understand the displace-
ment introduced by the turbine delay. The elements of the
diagonal matrix HL are:

` =
α`p`
ωn

(24)

where the parameter α` characterises the dependence of load
upon1ω` and can range from 2 to−0.5; p` is the steady-state
active load power in [p.u.] and ωn is the nominal (rated)
angular frequency. The final expression of the correlation
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FIGURE 7. Matrix H of the speed regulation coefficients.

FIGURE 8. Power [p.u.] balance.

between the generator power input and the frequency devia-
tion is expressed by (25). The final matrix is shown in Fig. 7.

1pi(s) = H(s) ·1ω(s) (25)

E. FINAL SETTLEMENT OF THE STATE MATRIX A AND
INPUT MATRIX
The power variations can be represented by means of the
power balance scheme shown in Fig. 8.

In Fig. 8, u(s) [p.u.] is the column vector of the power
disturbances injected into each node. The power balance of
Fig. 8 can be written as:[

A
s
+ D−H(s)+ s ·M

]
·1ω(s) = u(s) (26)

and by matrix inversion:

1ω(s) =
[
A
s
+ D−H(s)+ s ·M

]−1
u(s) (27)

The general use of (27) is considerably complex due to
the inversion of a matrix, which is function of s; however,
its use is easy if the numerical computation of the harmonic
response to a disturbance vector u·ejωt is considered: some
useful information on the dynamic behaviour of the linearized
system can be deduced. Similarly to the procedures in [15],

it is worth nothing that the vector of the mechanical power
due to the speed governor action in (28):

1piG(s) = HG(s) ·1ωG(s) (28)

can be expressed in the time domain as:

1piG(t) = H′G1ωG(t)+1p′′iG(t). (29)

For the state variable vector, the following relationship can
be written:

1ṗ′′iG = H′′G1ωG − T−11p′′iG (30)

where H’G, H’’G, T−1 are diagonal matrices with constant
terms. Once opportunely partitioned the matrices A, D,H(s),
M, the dynamic power balance in the time domain leads to the
expression in (31), as shown at the bottom of the next page.

In (31) it has:
• x is the column vector of the independent state variables:
xt = 1δtG,1δ

t
G’,1δ

t
L,1ω

t
G,1ω

t
L,1p′′tG ;

• x1 is the column vector of the dependent state variables:
xt1 = 1ω

t
G′ ,1δ

t
N.

The last part of the power balance can be expressed as a
function of disturbances, inertia and speed regulation coeffi-
cients as in (32):

1pG = uG +H′G1ωG +1p′′G −MG1ω̇G
1pL = uL +HL1ωL −ML1ω̇G
1pG′ = uG′
1pN = uN

 (32)

By comparing (31) with (32), the following new relation-
ships (33) can be obtained, as shown at the bottom of the next
page:

The above matrix relation can be rewritten with reference
to the new Q1÷ Q6 sub-matrices as in (34-36).

−MG1ω̇G = Q1x+Q2x1 − uG (34)

−ML1ω̇L = Q3x+Q4x1 − uL (35)

0 = Q5x+Q6x1 − uG′N (36)

Equation (36) holds the dependent state vector

x1 = Q−16 uG′N −Q−16 Q5x (37)

by introducing (37) in (34) and (35), it is possible to obtain
the fourth and fifth state equation (38-39).

1ω̇G = −M−1G

(
Q1 −Q2Q−16 Q5

)
x

−M−1G Q2Q−16 uG′N +M−1G uG (38)

1ω̇L = −M−1L

(
Q3 −Q4Q−16 Q5

)
x

−M−1L Q4Q−16 uG′N +M−1L uL (39)

The first state equation is the obvious identity written for
G nodes i.e.:

1δ̇G = I51ωG (40)
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The second state equation may be expressed according to
the following equation:

1̇δG = 1ωG =

1

1

1

1

1

x1 = −Q7Q−16 Q5x+Q7Q−16 uG′N (41)

The third state equation is the obvious identity written for
L nodes:

1δ̇L = I81ωL (42)

The sixth state equation is given directly by (30). By assem-
bling the six state equations, the matrix relation (43), as
shown at the bottom of the next page, can bewritten so that the
system state matrix and the input matrix are analytically
computed, as shown at the bottom of the next page.

III. ANGULAR FREQUENCY DEVIATIONS IN TIME
DOMAIN
Once the system state matrix and the input matrix are
completely computed as described in section II, it is possible
to achieve the time domain response of the linearized sys-
tem following a disturbance u(t). The time domain response
involves the extensive use of the matrix exponential function.

The solution of the state equation ẋ = x + u can be
expressed in the elegant matrix form by (44).

x (t) = e ·tx (0)+

t∫
0

e ·(t−τ) u (τ ) dτ (44)

where e t represents the matrix exponential of the state
matrix . Several different methods of calculation of e t

are given in textbooks, e.g. [27], [28]. However, in many
math-packages the matrix exponential is a native function.

The integral in (44) expresses the forced response and its
solution involves the inverse of the matrix , as follows [29]:

t∫
0

e ·(t−τ) u (τ ) dτ = −1et u(t). (45)

Since the matrix is singular, the integral could not be
computed in such a form.

DeCarlo demonstrates [30] that this kind of integral can be
evaluated by using the matrix exponential technique when the
input u on the system is constant so that its derivative is null
i.e. u̇ ≡ 0.

DeCarlo introduces a new state matrix R as shown
in Fig. 9(a) and indicates that the seeking integral is given
simply by R12u (u is constant) as shown in Fig. 9(b).
The implementation of these formulations allows plotting

the state variable behaviours in time domain, so giving a
more direct and clarifying indication on the stability of a
multimachine system.

(31)

(33)
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FIGURE 9. New state matrix and its exponential.

IV. COMPARISON BETWEEN LDPD AND PF ANGULAR
FREQUENCY DEVIATION BEHAVIOURS
With the aim of comparing the dynamic behaviour of the lin-
earized system following a disturbance with that of a ‘‘real’’
system, three case studies are presented in section V-A, V-B
and V-C: they are also compared with PF. In section V-A a 17-
bus grid is presented, in section V-B the number of buses is
increased to 29 buses with the aim of testing the robustness of
the algorithm. Other reference grids have been implemented
but they are not reported in this paper. However, a real case
seems to be extremely effective to perform a comparison,
so in section V-C the Sicily grid is implemented and the
small signal analysis is performed on it. Some assumptions
are adopted in the PF model to compare the results in a
rigorous manner. The generator model implemented in the
linearized dynamic is of the type ‘‘constant voltage behind
transient reactance’’, and the model adopted in PF is the
Model 2.2 [31], according to [32]. Since the LDPD generator
model does not take into account the sub-transient regime,

in some comparisons with PF, it is necessary to ‘‘freeze’’
the transient regime into the PF generator model, setting
sub-transient reactances (x ′′d and x ′′q ) equal to the transient
ones (x ′d and x ′q) and the transitory time constant t ′d and t ′q
to a very high value. In addition, the prime mover function
is considered as a unity gain also in PF, with the aim of
performing comparisons all factors being equal.

A. 17-BUS GRID CASE STUDY
In this section the reference grid introduced in section II is
implemented into PF (see Fig. 10). The study of such a sim-
plified network offers the opportunity to compare results with
a theoretical evaluation of the angular frequency behaviour,
described in [16] and valid for a single generator + loads.

This analytical approach allows computing the angular fre-
quency deviation after the transient (46), its peak value (47),
and the time at which the maximum peak occurs (48)

1ωreg = −2π
1P
KR

(46)

1ωmax = −2π (1+ m)
1P
KR

(47)

t1ωmax =
ϑ

ω0
√
1− ξ2

(48)

where KR is the regulating energy of the entire network, 1P
is the disturbance, ξ is the damping factor,ω0 is the character-
istic pulse and ϑ andm are two intermediate parameters [16].
On this basis, let us compute the grid dynamic after a 10%
step decrease of the load at node 6 (1MWof nominal power).

Fig. 11 shows the behaviours of the angular frequency
deviation of the slack bus generator (G1) computed with the
two approaches.

The agreement between LDPD and PF impresses, with a
difference less than 2% (see Table 1). It is also interesting
to note the behaviours of the angular frequency deviations
of the other generators computed with the abovementioned
simplifications on the PF generator model (see Fig. 12) and
by considering the complete generator model in PF without

(43)
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FIGURE 10. Single-line diagram of the analysed power system in PF.

FIGURE 11. Angular frequency deviations of the slack-bus after a
disturbance with LDPD and with PF.

‘‘freezing’’ of transient regime (see Fig. 13). Fig. 13 shows
a considerable displacement in the damping contribution
between PF and LDPD results. These mismatches are due
to the different mathematical model adopted for the LDPD,
based on the transient reactance.

This is confirmed by the simulation performed in Fig. 12 by
‘‘freezing’’ the transient regime also in the PF generator
model. In fact, the damping factor in this case is the same
for the two methods.

It can be seen how the linearized dynamic enhances the
oscillatory phenomena (with a less damping effect) with
respect to PF using a complete generator model. Neverthe-
less, it is impressive to note the good agreement between the
two dynamics during the first second of the transient, just
when the small signal stability is settled.

FIGURE 12. Angular frequency deviations of all the generator buses after
a disturbance with LDPD and with PF: simplified PF generator model.

FIGURE 13. Angular frequency deviations of all the generator buses after
a disturbance with LDPD and with PF: complete PF generator model.

TABLE 1. Comparison of absolute values and percentage errors of
dynamic response quantities.

B. 29-BUS GRID CASE STUDY
In this case study, the number of nodes is increased up to 29 to
verify whether LDPD gives good results as network com-
plexity increases. Fig. 14 shows the network implemented
in PF.

Let us compute the grid dynamic after a 10% step
decrease of the load at node 20 (1 MW of nominal power).
Fig. 15 shows the angular frequency deviation behaviour in
the slack bus computed with LDPD and with PF.

Once again, the agreement between the dynamic simula-
tion and the linearized one is very good, with a difference
less than 4% in the maximum value of the angular frequency
deviation (see Table 2). Fig. 15 also shows the angular fre-
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FIGURE 14. Single-line diagram of the 29-bus analysed power system in
PF.

FIGURE 15. Angular frequency deviations of the slack bus after a
disturbance with LDPD and with PF for the 29-bus grid.

quency deviation 1ωref after the transient (green line): it is
in accordance with the simulated behaviour. This agreement
can be observed also in Fig. 16, where all network generator
angular frequencies are shown, by considering the complete
generator model in PF.

It is worth noting how the linearized dynamic enhances
the oscillatory phenomena (with a less damping effect) with
respect to the complete generator model.

In Table 2 the main computed quantities related to the
angular frequency behaviours are reported, by comparing
LDPD, PF and TH.

From Table 1 and Table 2, it is possible to observe how
the deviations of the LDPD with respect to the reference
theoretical calculations keep practically unchanged compared
to the 17-bus grid. The maximum angular frequency devi-
ations of the LDPD with respect to the PF presents a dis-
placement compared to the 17-bus case study, but always with
a difference less than 4%. This displacement is due to the
higher complexity of the network, which makes less licit the
dynamic linearization.

FIGURE 16. Angular frequency deviations of all the generator buses after
a disturbance with LDPD and with PF (complete PF generator model) for
the 29-bus grid.

TABLE 2. Comparison of absolute values and percentage errors of
dynamic response quantities for 29-bus grid.

In the following, a sensitivity analysis is performed,
in order to show how a change in one parameter modifies
the angular frequency deviation behaviour and to show if it
happens indifferently for LDPD and for PF dynamics.

The first analysis aims at showing what happens with the
change in the time regulation constant value TR for the slack
bus generator, from 10 s to 5 s.
Fig. 17 shows how the regulation constant decrease leads

to a greater promptness in the regulator response and to a less
pronounced overshoot, in accordance with the theory.

In the steady-state regime, the frequency deviation cor-
rectly returns to the same value since the frequency droop
(and hence the regulating energy) is the same in both cases.

With the second analysis, a slack-bus generator frequency
droop decreasing is performed. Fig. 18 shows that in the
steady-state regime the frequency deviation goes to a lower
value and during the transient regime the frequency overshoot
remains less pronounced. This behaviour is justified by the
gain increase of the closed-loop transfer function of the con-
trol loop.

It is worth noting the effect of such a variation in the
eigenvalue diagram of the LDPD state matrix. From Fig. 19,
it can be seen that, in the lower droop case, the eigenval-
ues contributing for the most part to the state variable 1ω
of the slack-bus, present a negative real part with a higher
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FIGURE 17. Angular frequency deviations of the slack-bus after a
disturbance with LDPD for the 29-bus grid with TR = 5 s and TR = 10 s.

FIGURE 18. Angular frequency deviations of the slack-bus after a
disturbance with LDPD for the 29-bus grid with σ = 0.025 and σ = 0.05.

FIGURE 19. Detail of the state matrix eigenvalues diagram of the LDPD
for the 29-bus grid with σ = 0.025 and σ = 0.05.

magnitude. This means that the corresponding modes have
got a higher damping, as shown in the time-domain behaviour
of Fig. 18.

LDPD also offers the possibility to study the angular
frequency deviation behaviours by varying the portion of
asynchronous rotating loads, as both a static and a dynamic
variation. Consequently, it is interesting to analyse the fre-
quency behaviour by varying this parameter.

In particular, Fig. 20 and Fig. 21 show how the frequency
behaviour changes in accordance with the following load
properties, for the generator 1 (see Fig. 20) and for the
generator 2 (see Fig. 21) respectively:

1. Qs = 1; Qd = 0 (standard case);

FIGURE 20. Angular frequency deviations of the slack-bus computed with
LDPD after a disturbance in the 29-bus grid with different share of
asynchronous load.

FIGURE 21. Angular frequency deviation of G2 after a disturbance with
LDPD for the 29-bus grid with different share of asynchronous load.

2. Qs = 0.5; Qd = 0.5 (Tas = 3 s);
3. Qs = 1; Qd = 1 (Tas = 3 s)

whereQs provides the load share with a static dependence by
the frequency and Qd provides the load share with a dynamic
dependence by the frequency, by considering conventionally
a starting time for loads equal to 3 s.

From Fig. 20 it can be seen how the increase of the asyn-
chronous load share of the dynamic type makes the frequency
derivative at the starting time decrease since the global net-
work starting time increases.

It can be also highlighted how in the case of Qs = 0.5
the frequency overshoot is higher, since load participates
less in the frequency regulation, resulting in a less damping
frequency.

Fig. 21 shows the influence of the dynamic type asyn-
chronous load share in the frequency deviation behaviour for
the generator G2. It is evident that this type of dynamic load
enhances the oscillations of the less powerful generators. This
phenomenon can also be seen in the eigenvalue diagram of
Fig. 22. There is an increase in the imaginary part of the
oscillatory modes (related to the oscillation amplitude) by
increasing the asynchronous load.

C. SICILY POWER SYSTEM ISLANDED AND
INTERCONNECTED OPERATIONS
In this section, the results from the study of the linearized
dynamic behaviour applied to the Sicily power system are
presented. Twomain case studies are analysed: the Sicily grid
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FIGURE 22. Detail of the state matrix eigenvalue diagram of the LDPD for
the 29-bus grid with different share of asynchronous load.

FIGURE 23. Sicily network.

connected with the mainland and the Sicily grid in islanding
operation.

In the first case, the mainland grid is modelled by an
equivalent generator placed in the ‘‘Rizziconi’’ power plant
(the red circle in the top-right of Fig. 23).

Fig. 23 shows the substations represented by dots coloured
according to these voltage levels:
• Red for 400 kV;
• Green for 220 kV;
• Violet for 150 kV;
• Ochre for 15 kV;
• Grey for out of service.
The first approach is to consider the Sicily grid intercon-

nected with the mainland, i.e. with the pan-European electric
power grid. With this aim, it is chosen to attribute a regulating
energy of 50000 [MW/Hz] to the equivalent generator placed
in ‘‘Rizziconi’’, i.e. the regulating energy value imputable to
the European grid in the daytime.

KR =
Sn
σ fn

(49)

From (49) the equivalent droop to be attributed to the slack
bus generator can be calculated, (i.e. σ = 0.24 · 10−3),
by considering the generator apparent power Sn = 600MVA.
Let us compute the linearized dynamic behaviour and the

complete one of the network after an active power disturbance
at the 37-node (MGTP substation).

FIGURE 24. Angular frequency deviations of all generators after a
disturbance of interconnected Sicily with LDPD and PF.

FIGURE 25. Angular frequency deviations of the slack-bus after a
disturbance of the interconnected Sicily with LDPD and PF.

The disturbance is equal to 15.78 MW (10% of the total
absorbed active power of 157.78 MW) which corresponds
to 1.4% of the total absorbed power in the Sicily grid in
a low-load condition (PSicily = 1106.60 MW). This dis-
turbance can be considered as a ‘‘small disturbance’’ to be
studied by a linearized dynamic.

Fig. 24 reports the angular frequency deviation behaviours
of all the generators after the disturbance, both for the case
study implemented in PF (shades of blues) and in LDPD
(shades of red).

In Fig. 25 only the slack generator behaviours are reported.
It is worth noting that the behaviour of the slack genera-
tor angular frequency deviation is similar for the two cases
during the transient and the steady state regime. It can
also be observed that the generator angular frequency oscil-
lates around the grid-interconnected frequency, as one would
expect in a real situation.

In Fig. 26 the eigenvalue complex space is reported,
respectively for LDPD and PF. For the x-axis, a logarith-
mic scale is applied. The state variables considered for the
Modal Analysis in PF are different from those of the present
approach. Despite this, by means of an analysis of the partic-
ipation factors, it is verified that the eigenvalues related to the
modes participating for the majority to the generator angular
frequency are placed in the central part of the complex plane,
around the value of 100.
Fig. 26 shows this part of the plane. It confirms the effec-

tiveness of the obtained results also for the calculation of the
eigenvalues.
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FIGURE 26. Detail of the state matrix eigenvalue diagram of the LDPD
and of the PF modal analysis for Sicily interconnected grid.

FIGURE 27. Angular frequency deviations of all the generators of the
islanded Sicily grid after a disturbance with LDPD and PF.

The most interesting result of this part is the static stability
of this particular configuration of the grid, which arises both
from the angular frequency behaviour and from the eigenval-
ues analyses.

The second case study regards the Sicily grid in an islanded
operation. The active power flowing from the Italian grid is
attributed to the slack-bus, whose droop is set to 5 %. In
this way, Sicily HV grid is considered without an external
interconnection: the generators, with a regulation capability,
act in response to a small disturbance.

This particular operating condition, corresponding to a real
operating scenario, ensures the power-flow convergence and
the static stability of the whole isolated system.

The applied disturbance is the same as before, equal
to 15.78 MW (10% of the total absorbed active power
of 157.78 MW) which corresponds to 1.4% of the total
absorbed power in the Sicily grid in a low-load condition
(PSicily = 1106.60 MW).

Fig. 27 shows the angular frequency deviation behaviours
of all the generators after the disturbance, both for the case
study implemented in PF (shades of blues) and for LDPD
(shades of red). In Fig. 28, only the slack bus generator
behaviours are reported.

It is worth noting that also in this case the qualitative
behaviour of the generators for the two cases is the same. The
steady-state value of frequency deviations for the two models
are corroborated by TH in (46), indicated by a green line
in Fig. 28. The displacement observed in the transient state

FIGURE 28. Angular frequency deviations of the slack-bus of the islanded
Sicily grid after a disturbance with LDPD and PF.

FIGURE 29. Detail of the state matrix eigenvalue diagram of LDPD for
Sicily interconnected grid and Sicily islanded grid.

can be attributed partly to the actual nature of the islanded
network: the absence of an extensive grid makes the hypoth-
esis of constant voltage fail at the network nodes during the
electromechanical transient, on which LDPD is based.

This hypothesis is well verified when the multi-machine
dynamic is performed for a network where the regulating
energy of the upstream network prevails over the sum of the
regulating energies of the grid generators (as for the reference
networks and for Sicily connected to the mainland).

However, the islanded operation for the Sicily grid is not a
normal network operation, but it happens only when a failure
on the interconnection lines occurs.

From Fig. 29, it can be ascertained how the eigenvalue
diagram changes between the interconnected and the islanded
Sicily operation. For both cases, the eigenvalues related to
angular frequency deviations of generators, in the central part
of the diagram, have a smaller imaginary part for the case of
interconnected Sicily, respect to the case of islanded Sicily.
Such a behaviour confirms the higher damping and the lower
magnitude of the generator amplitude in a network with a
higher regulating energy compared to a network with a lower
regulating energy.

V. CONCLUSION
The paper thoroughly presents a fully implementable algo-
rithm that allows analytically computing both the state
and input matrices and also the angular frequency devi-
ations of synchronous generators during an active power
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FIGURE 30. Substations bus management.

step disturbance. The students of Electrical Engineering of
the University of Padova implement the present procedures
inMatlab environment, but otherMath-packages can be used.
Extensive comparisons between LDPD and PF show a good
agreement of frequency deviation behaviours. The compared
case studies are reference grids and chiefly the Sicily grid.

Consequently, the present LDPD gives an effective orien-
tation of the multimachine transient stability. The choice of
developing fully implementable self-made algorithms is in
tune with other researches of Padova EETL (Electric Energy
Transmission Laboratory) [12], [33] and with the didacti-
cal approach of Power System Courses at the University of
Padova.

APPENDIX
THE INTERFACE PROCEDURE
The interface procedure between PF and LDPD allows pass-
ing automatically from a real complex network to an essential
network feeding the input data of LDPD. This step is crucial
because LDPD needs a strictly ordered topology involving a
connected graph where every node can be a PV node, a PQ
node or a slack bus.

The procedure uses Microsoft Excel as a bridge between
the PF flexible data and the Matlab input matrices. In fact,
the Matlab matrices contain all topological and typological
information about the network. There are essentially two
different issues about the topological structure, which the
interface procedure has to face with.

The first issue concerns the management of the substa-
tion busbars. For example, in order to maintain the correct
grid topological consistency, two connected busbars must be
considered as a single node in Matlab. This issue is solved
as shown in fig. 30. It can be noted that the presence of
switches (which are controlled elements existing in real grids:
disconnectors and circuit breakers) is suitably treated by the
interface program. In fact, if switch is on a single node is
created, if it is off an open circuit is created.

The second issue deals with the presence of more than
one edge component insisting on the same node (e.g. one
generator and one load insisting on the same bus bar). In this
case, a fictitious line is automatically generated as shown
in Fig. 31. This figure shows the values of the line length
and of r , l, c. They are chosen to simulate a short-circuit
connection, but, at the same time, not to create numeric
problems in the Matlab-based algorithm (e.g. ill-conditioned
network).

FIGURE 31. Fictitious line management and line parameters.

FIGURE 32. Schematic representation of the transfer from a real complex
network in PF to an essential network in LDPD (this correspondence is
created by exploiting the interface procedure).

The impact of these lines in the power flow and in the
dynamic studies is almost null due to their lengths: their
influence could be compared to the impact of real substation
busbars.

In this way, data about nodes in Matlab environment -
pertaining to the new corresponding network - are created.

On the contrary, the information about connections and
typologies are treated more simply. In fact, the interface
procedure extracts data from flexible data PF and creates
matrices containing all the parameters modelling the real
transmission elements (e.g. generators, 3-winding trans-
former, lines, shunt, etc.). The interface procedure is also
characterized by the presence of check procedures: they
are useful programs to verify if correspondence is achieved
in a correct manner, especially for very large transmission
networks.

In this way, a univocal correspondence is created and the
network can be studied correctly with LDPD. In Fig. 32 the
procedure to rebuild a network in Matlab from PF is shown
schematically.
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