26 research outputs found

    Molecular mechanisms in haematological malignancies

    Get PDF
    Haematopoiesis requires the constant production of large numbers of peripheral blood cells. This process is under tight control of transcription factor networks as well as cytokines, growth factors and hormones. We will review the importance of transcription factors in programming the haematopoietic lineage commitment and the role of the microenvironment and the corresponding cellular sensitivity to ensure production of mature functional cells in response to the physiological demand. Understanding the molecular mechanism of this complex process gives the opportunity to identify the underlying molecular deregulation in haematopoietic malignancies. The different levels of deregulation include hyperproliferation, block in differentiation and sensitivity to growth factors. In this review, leukaemic transformation is selected to give evidence of cell signalling deregulation. The clinical implications will be reviewed in the context of the potential opportunities in the future to identify specific therapeutic patient groups that can be defined using prognostic and predictive biomarkers.peer-reviewe

    RUNX1-ETO Depletion in t(8;21) AML Leads to C/EBP alpha- and AP-1-Mediated Alterations in Enhancer-Promoter Interaction

    Get PDF
    Acute myeloid leukemia (AML) is associated with mutations in transcriptional and epigenetic regulator genes impairing myeloid differentiation. The t(8;21) (q22;q22) translocation generates the RUNX1-ETO fusion protein, which interferes with the hematopoietic master regulator RUNX1. We previously showed that the maintenance of t(8;21) AML is dependent on RUNX1-ETO expression. Its depletion causes extensive changes in transcription factor binding, as well as gene expression, and initiates myeloid differentiation. However, how these processes are connected within a gene regulatory network is unclear. To address this question, we performed Promoter-Capture Hi-C assays, with or without RUNX1-ETO depletion and assigned interacting cis-regulatory elements to their respective genes. To construct a RUNX1- ETO-dependent gene regulatory network maintaining AML, we integrated cis-regulatory element interactions with gene expression and transcription factor binding data. This analysis shows that RUNX1-ETO participates in cis-regulatory element interactions. However, differential interactions following RUNX1- ETO depletion are driven by alterations in the binding of RUNX1-ETO-regulated transcription factors

    The Role of Attitudes Toward Medication and Treatment Adherence in the Clinical Response to LAIs: Findings From the STAR Network Depot Study

    Get PDF
    Background: Long-acting injectable (LAI) antipsychotics are efficacious in managing psychotic symptoms in people affected by severe mental disorders, such as schizophrenia and bipolar disorder. The present study aimed to investigate whether attitude toward treatment and treatment adherence represent predictors of symptoms changes over time. Methods: The STAR Network \u201cDepot Study\u201d was a naturalistic, multicenter, observational, prospective study that enrolled people initiating a LAI without restrictions on diagnosis, clinical severity or setting. Participants from 32 Italian centers were assessed at three time points: baseline, 6-month, and 12-month follow-up. Psychopathological symptoms, attitude toward medication and treatment adherence were measured using the Brief Psychiatric Rating Scale (BPRS), the Drug Attitude Inventory (DAI-10) and the Kemp's 7-point scale, respectively. Linear mixed-effects models were used to evaluate whether attitude toward medication and treatment adherence independently predicted symptoms changes over time. Analyses were conducted on the overall sample and then stratified according to the baseline severity (BPRS < 41 or BPRS 65 41). Results: We included 461 participants of which 276 were males. The majority of participants had received a primary diagnosis of a schizophrenia spectrum disorder (71.80%) and initiated a treatment with a second-generation LAI (69.63%). BPRS, DAI-10, and Kemp's scale scores improved over time. Six linear regressions\u2014conducted considering the outcome and predictors at baseline, 6-month, and 12-month follow-up independently\u2014showed that both DAI-10 and Kemp's scale negatively associated with BPRS scores at the three considered time points. Linear mixed-effects models conducted on the overall sample did not show any significant association between attitude toward medication or treatment adherence and changes in psychiatric symptoms over time. However, after stratification according to baseline severity, we found that both DAI-10 and Kemp's scale negatively predicted changes in BPRS scores at 12-month follow-up regardless of baseline severity. The association at 6-month follow-up was confirmed only in the group with moderate or severe symptoms at baseline. Conclusion: Our findings corroborate the importance of improving the quality of relationship between clinicians and patients. Shared decision making and thorough discussions about benefits and side effects may improve the outcome in patients with severe mental disorders

    Prospective validation of the CLIP score: a new prognostic system for patient with cirrhosis and hepatocellular carcinoma

    Get PDF
    Prognosis of patients with cirrhosis and hepatocellular carcinoma (HCC) depends on both residual liver function and tumor extension. The CLIP score includes Child-Pugh stage, tumor morphology and extension, serum alfa-fetoprotein (AFP) levels, and portal vein thrombosis. We externally validated the CLIP score and compared its discriminatory ability and predictive power with that of the Okuda staging system in 196 patients with cirrhosis and HCC prospectively enrolled in a randomized trial. No significant associations were found between the CLIP score and the age, sex, and pattern of viral infection. There was a strong correlation between the CLIP score and the Okuda stage, As of June 1999, 150 patients (76.5%) had died. Median survival time was 11 months, overall, and it was 36, 22, 9, 7, and 3 months for CLIP categories 0, 1, 2, 3, and 4 to 6, respectively. In multivariate analysis, the CLIP score had additional explanatory power above that of the Okuda stage. This was true for both patients treated with locoregional therapy or not. A quantitative estimation of 2-year survival predictive power showed that the CLIP score explained 37% of survival variability, compared with 21% explained by Okuda stage. In conclusion, the CLIP score, compared with the Okuda staging system, gives more accurate prognostic information, is statistically more efficient, and has a greater survival predictive power. It could be useful in treatment planning by improving baseline prognostic evaluation of patients with RCC, and could be used in prospective therapeutic trials as a stratification variable, reducing the variability of results owing to patient selection

    CEPBA in normal blood cell development and in myeloid malignancies

    Get PDF
    Expression levels of the myeloid transcription factor _CEBPA_ in the bone marrow are critical to maintain the balance between normal hematopoiesis and the onset of malignancy. What maintains constant levels of _CEBPA_ in normal hematopoiesis and how these levels are perturbed to trigger leukemogensis are less understood. In this thesis, a critical myeloid-specific regulatory element controls Cebpa expression levels in both mice and humans, was discovered. In the murine hematopoietic system, this regulatory element engages with Cebpa to prime neutrophilic differentiation. Genetic knockout of this regulatory element using CRISPR technology in mouse zygotes resulted in loss of mature neutrophils in the peripheral blood and also perturbed the myeloid progenitor system in the bone marrow. In a subtype of acute myeloid leukemia (AML), _CEBPA_ expression levels are low when relatively compared to other AMLs. What is the fundamental cause of low _CEBPA_ expression levels in AML? This question was approached in two ways: either by potential DNA mutations occuring in the regulatory regions of _CEBPA_ or epigenetic deregulation caused by AML-related oncoproteins. The CEBPA locus was screened for mutations in 300 AML patients. Only one patient harboured a biallelic deletion of the whole _CEBPA_ locus (220kb). However, it is more likely that _CEBPA_ expression levels are deregulated by oncoproteins that bind the identified regulatory element, reverses its active chromatin state and disturbs the chromatin loop between the enhancer and _CEBPA_. The thesis reports the identification of the regulatory element that primes the entry of myelopoiesis in the bone marrow and identifies a mechanism by which oncoproteins block myeloid differentiation in AML by disturbing the transcriptional regulatory mechanism of _CEBPA_ in the bone marrow

    Molecular mechanisms in haematological malignancies

    No full text
    Abstract Haematopoiesis requires the constant production of large numbers of peripheral blood cells. This process is under tight control of transcription factor networks as well as cytokines, growth factors and hormones. We will review the importance of transcription factors in programming the haematopoietic lineage commitment and the role of the microenvironment and the corresponding cellular sensitivity to ensure production of mature functional cells in response to the physiological demand. Understanding the molecular mechanism of this complex process gives the opportunity to identify the underlying molecular deregulation in haematopoietic malignancies. The different levels of deregulation include hyperproliferation, block in differentiation and sensitivity to growth factors. In this review, leukaemic transformation is selected to give evidence of cell signalling deregulation. The clinical implications will be reviewed in the context of the potential opportunities in the future to identify specific therapeutic patient groups that can be defined using prognostic and predictive biomarkers

    Induced cell-autonomous neutropenia systemically perturbs hematopoiesis in Cebpa enhancer-null mice

    Get PDF
    The transcription factor C/EBPa initiates the neutrophil gene expression program in the bone marrow (BM). Knockouts of the Cebpa gene or its 137kb enhancer in mice show 2 major findings: (1) neutropenia in BM and blood; (2) decrease in long-term hematopoietic stem cell (LT-HSC) numbers. Whether the latter finding is cell-autonomous (intrinsic) to the LT-HSCs or an extrinsic event exerted on the stem cell compartment remained an open question. Flow cytometric analysis of the Cebpa 137kb enhancer knockout model revealed that the reduction in LT-HSC numbers observed was proportional to the degree of neutropenia. Single-cell transcriptomics of wild-type (WT) mouse BM showed that Cebpa is predominantly expressed in early myeloid-biased progenitors but not in LT-HSCs. These observations suggest that the negative effect on LT-HSCs is an extrinsic event caused by neutropenia. We transplanted whole BMs from 137kb enhancer-deleted mice and found that 40% of the recipient mice acquired full-blown neutropenia with severe dysplasia and a significant reduction in the total LT-HSC population. The other 60% showed initial signs of myeloid differentiation defects and dysplasia when they were sacrificed, suggesting they were in an early stage of the same pathological process. This phenotype was not seen in mice transplanted with WT BM. Altogether, these results indicate that Cebpa enhancer deletion causes cell-autonomous neutropenia, which reprograms and disturbs the quiescence of HSCs, leading to a systemic impairment of the hematopoietic process

    RUNX1-ETO Depletion in t(8;21) AML Leads to C/EBPα- and AP-1-Mediated Alterations in Enhancer-Promoter Interaction

    Get PDF
    Acute myeloid leukemia (AML) is associated with mutations in transcriptional and epigenetic regulator genes impairing myeloid differentiation. The t(8;21) (q22;q22) translocation generates the RUNX1-ETO fusion protein, which interferes with the hematopoietic master regulator RUNX1. We previously showed that the maintenance of t(8;21) AML is dependent on RUNX1-ETO expression. Its depletion causes extensive changes in transcription factor binding, as well as gene expression, and initiates myeloid differentiation. However, how these processes are connected within a gene regulatory network is unclear. To address this question, we performed Promoter-Capture Hi-C assays, with or without RUNX1-ETO depletion and assigned interacting cis-regulatory elements to their respective genes. To construct a RUNX1- ETO-dependent gene regulatory network maintaining AML, we integrated cis-regulatory element interactions with gene expression and transcription factor binding data. This analysis shows that RUNX1-ETO participates in cis-regulatory element interactions. However, differential interactions following RUNX1- ETO depletion are driven by alterations in the binding of RUNX1-ETO-regulated transcription factors
    corecore