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Figure 1. The hierarchy of hematopoietic development the bone marrow. Long term hematopoietic stem cells 
(LT-HSCs) give rise to multipoint progenitors (MPP2/3 and MPP4) via a transient stage of short-term hematopoietic 
stem cells (ST-HSCs). MPP2/3 progenitors constitute the myeloid fate or common myeloid progenitors that give rise 
to the granulocytic/monocytic progenitor (GMP), dendritic/monocytic progenitor (DMP) and the megakaryocytic 
progenitor (MEP). These progenitors further mature to give rise to myeloid cells including the granulocytes 
(neutrophils, eosinophils, and basophils), mononuclear cells (monocytes, macrophages and dendritic cells), 
platelets and erythrocytes. The MPP4 progenitor is lymphoid primed and gives rise to the common lymphoid 
progenitor that constitutes B-cell and T-cell progenitors. These progenitors mature into naive B and T-cells that 
migrate to secondary lymphoid organs to complete mature stages via antigen encounter and engagement.
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1.1       HEMATOPOIESIS	

1.11	 Introduction to hematopoiesis
The bone marrow is an active regenerative organ that supplies the adult human body on 
a daily basis with billions of blood cells to maintain the constant function of the immune 
system, the oxygen carrier system and the hemostatic system[1]. This ongoing process of 
blood cell formation is known as hematopoiesis, derived from the Greek word that means 
‘to make blood’. For long, hematopoiesis is believed to occur in hierarchy with the so-called 
long-term hematopoietic stem cells (LT-HSCs) sitting at the top of the apex. This infrequent 
LT-HSC population has high self-renewal capacity to maintain its rare pool (symmetric 
cell division) and further proliferate and differentiate to give rise to more committed and 
differentiated progenitors (asymmetric cell division) of the myeloid and lymphoid fate[2]. A 
representation of the hematopoietic hierarchy is shown in Figure 1.

The complex process of hematopoietic cell proliferation and differentiation involves 
extracellular communicatory processes between the hematopoietic stem/progenitor cells 
(HSPCs) and the bone marrow microenvironment[3]. The anatomical distribution of the 
bone marrow core and its environment allows this highly organized two-way/multi-way 
communication system to act in synchrony for maintaining the numbers and behavior of 
all bone marrow cells under a homeostatic and regenerative balance [4]. In response to 
extra-cellular regulatory processes, HSPCs undergo intracellular changes that prime lineage-
specific epigenetic landscapes and activate gene expression programs in order to fully 
differentiate into functional blood cells [5, 6], which are later released into the systemic 
circulation to conduct their function at peripheral organs. 

The priming and activation of gene expression programs during cell differentiation 
is fine-tuned by DNA binding transcription factors (TF) during early and adult life[7]. In 
collaboration with other nuclear proteins, these TFs form networks and together they 
bind sequence specific DNA elements, such as promoters and enhancers to modulate 
gene expression programs involved in differentiation. Altogether, these factors cooperate 
to shape the structure and function of the genome and promote cell type specific lineage 
commitment and differentiation[8]. Changes in the levels and activity of many of these 
factors, either induced experimentally or in disease, lead to aberrant bone marrow function 
and, ultimately, give rise to bone marrow failure syndromes and clonal hematological 
malignancies[9].

The following section gives a detailed description of hematopoiesis in early development 
in the fetus and in adult life. In addition it will be discussed how HSCs interact with the 
microenvironment to regulate their dynamics in quiescence, proliferation and differentiation.

Introduction
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1.12	 The hematopoietic system: From the early fetus to adult hematopoiesis
The hematopoietic stem cells lie at the apex of the hematopoietic system and are considered 
to replenish the bone marrow with multipotent progenitors and subsequent lineage 
committed cells for the lifetime of an organism. These so-called long term hematopoietic 
stem cells are localized within specific bone marrow niches which modulate their kinetic 
activity upon physiological demand[10].  Blood cell production occurs through different 
stages of development and the major sources that are responsible for production and 
maintenance differ in fetal life from adult life.

In the early fetus, hematopoiesis occurs in two waves known as the primitive and 
definitive hematopoiesis. Primitive wave hematopoiesis occurs mainly in the yolk sac blood 
islands derived from a mesodermal cell type known as the hemangioblast that gives rise to 
hematopoietic and endothelial cells[11].  At day 7 (E7) of the murine gestation period, the 
majority of hematopoietic cells produced during the primitive wave of hematopoiesis are 
erythrocytes to supply oxygen for growing tissues and organs in the fetus[12, 13]. In addition, 
macrophages are also detected at this stage, most probably required for tissue resorption 
during organ development, which reach a quantitative abundance at E9.5 together with 
megakaryocytes [14, 15].

The second wave of blood cell production, known as the definitive wave, temporally 
overlaps with the first wave, and begins at E8.25 in the yolk sac. The majority of cells 
produced are c-Kit+ and CD41+ erythroid-myeloid progenitors, which are positive for the 
CD16/32 granulocytic marker at E9.5 and start also producing B-major adult hemoglobin 
erythrocytes, independent from the first wave derived erythrocytes[16-20]. These erythroid 
myeloid progenitors migrate and colonize the new forming liver, where predominant 
production of erythrocytes, granulocytes, monocytes, and macrophages occurs [16, 18, 21]. 
The lymphoid compartment is detected between E8.5/E9.5 in the second wave and is found 
in the yolk sac and aorta [22, 23]. 

The hematopoietic stem cells (HSCs) appear at E10.5, generated autonomously in 
different sites of the embryo. They first appear at the aorta-gonad-mesonephric (AGM) 
region and also in the placenta, the umbilical arteries and vitelline arteries. The cell deri-
vatives of HSCs are the hemogenic endothelial cells that, under the regulation of Runx-1 
and Gata-2, undergo an endothelial to hematopoietic cell transition or EHT. The fetal liver 
becomes the major niche for HSCs for a transient period of time before the permanent 
hematopoietic system is established in the bone marrow at birth [24-26]. After birth, HSCs 
proliferate autonomously for three weeks and then they enter in a dormant state unless an   
external insult challenges their quiescence into cell division [27].

Adult long-term hematopoiesis is majorly dependent on HSCs. By definition, long-
term hematopoietic stem cells (LT-HSCs) are able to repopulate the bone marrow in 
transplantation settings, confirming their life-long property to sustain constant blood 
production [28]. LT-HSCs are known to reside in a quiescent niche where they divide rarely.  

Chapter 1
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A proportion of these LT-HSCs in the mouse are estimated to divide every 30-50 days based on 
BrdU incorporation studies [29, 30]. A more dormant LT-HSC sub-population that constitutes 
15% of the total HSC population is estimated to divide about five times in a mouse lifetime 
and do not contribute to daily blood cell production.  However, this population is thought to 
participate in emergency cases such as inflammatory diseases, blood loss and tissue injury 
[30].

1.13	 Hematopoietic stem cells and the bone marrow niche
The dynamics and kinetics of HSCs, including quiescence, self-renewal, proliferation, 
cell division and differentiation are modulated via interactions with the bone marrow 
microenvironment[3]. The bone marrow microenvironment or the bone marrow niche is 
composed of hematopoietic and non-hematopoietic cells. These non-hematopoietic cells 
make up the most significant compartment of the bone marrow stroma, subdivided into 
different niches but yet involved in one communication system to regulate HSC kinetics 
and maintenance [3, 31]. The bone marrow is highly vascularized with major arteries 
protruding into the venous sinusoids found close to the bone surface (endosteum). The 
endosteum is composed of osteoblast and osteoclasts. The majority of HSCs resides at 
perivascular niches and localize preferably to endosteal and sinusoidal regions [32, 33]. At 
these regions, HSCs are at close proximity of non-hematopoietic cells such as, bone-lining 
osteoblasts, endothelial cells of arterial and venal membranes, pericytes, mesenchymal 
stromal cells, also known as CXC-chemokine ligand 12 (CXCL12) abundant reticular cells 
(CAR-cells) and endothelial cells which constitute the biggest supply and production of stem 
cell factor (SCF), angiopoietin, transforming growth factor B (TGF-B) and CXCL12 to maintain 
HSCs under a quiescent physiological state[34-39]. In addition to non-hematopoietic cells, 
megakaryocytes also provide an important supply of TGF-B and CXC-chemokine ligand 4 to 
help maintaining HSC quiescence, whereas in emergency situations like radiation and myelo-
ablation, megakaryocytes induce HSC expansion to increase HSC capacity and repopulate 
the bone marrow via the production and secretion of fibroblast growth factor 1 (FGF1)[40, 
41]. Such mechanisms protect HSCs and keep them in a quiescent state to prevent HSC 
proliferation and HSC exhaustion that leads to bone marrow failure. Figure 2 represents the 
bone marrow microenvironment and offers a schematic presentation of different niches.

1.14	  Down the hematopoietic hierarchy: differentiation of LT-HSCs into specific 
lineages
Mechanisms how HSCs differentiate to produce their progeny is mainly based on in vitro 
colony assays and HSC transplantation in recipient mice. Specific growth factors, also called 
cytokines are responsible for driving the different progenitor cells into specific lineages 
by activating their corresponding membrane receptor [27]. For example, erythrocytes are 
generated under the stimulation of erythropoietin (Epo). Colony stimulating factor-3 (CSF-3),  
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G-CSF specifically stimulates neutrophil development, whereas thrombopoietin is a critical
factor for platelet production[20].

LT-HSCs lie at the apex of the hematopoietic hierarchy and they give rise to progenitors 
with multi-lineage potential known asmulti-potent progenitors or MPPs[4]. The multipotent 
prognentor fraction is characterized by lineage makers (Lin-ve, Sca-1 pos, cKIT pos) 
CD48+CD150-, CD48+150+ and CD150+CD34+. Using functional assays, these MPPs were 
further subdivided based on their lineage potential; MPP2, MPP3 and MPP4 (Figure 1). 
These MPPs are driven by lineage-specific transcription factors to undergo myeloid or 
lymphoid differentiation. Lineage-specific TFs are under the control of a heptad of TFs that 
form a protein complex and bind genomic regions to activate the expression of lineage 
specific transcription factors[26, 42, 43]. Downstream of these MPPs, as defined by the 
hematopoietic hierarchy, are found myeloid and lymphoid fate progenitors that give rise 
to differentiated mature cells[44-46]. This thesis mainly focuses on myelopoiesis with a  
special interest in neutrophilic differentiation, thus introducing lymphopoiesis is beyond 
the scope of this thesis. A detailed description of the myeloid hierarchy is given based 
on previous findings reported in the last two decades, followed by new findings that are 
challenging previous conclusions and shaping in to new ideologies in adult myelopoiesis.
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Figure 2. The hematopoietic stem cell (HSC) bone marrow nice. The HSC niche is highly heterogeneous and 
composed of different types of stromal cells that modulate the kinetics of HSCs. Mostly identified niches include 
the bone niche, the sinusoidal and the megakaryocytic niche and the arteriole niche. These niches communicate 
with HSC by the secretion of factors that maintain HSCs under quiescence or stimulate proliferation in replicative 
stress, tissue injury, blood loss or severe infections. 

1.15 	 Myelopoiesis: Myeloid progenitor cell populations and differentiation 
The term myelopoiesis refers to the development of bone marrow cells towards the myeloid 
lineages. The myeloid compartment comprises a highly heterogeneous cell progenitor 
population that gives rise to mature neutrophils, eosinophils, basophils, mast cells, 
monocytes, macrophages, dendritic cells and megakaryocytes (Fig.1). The granulocytes, 
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monocytes, macrophages and the dendritic cells are the first line of innate immune cells 
that act as sentinels in the blood stream and in solid organs to protect against non-self-
antigens and pathogens. Basophils, mast cells and eosinophils are less abundant in the 
circulatory system but are increased upon allergies or parasitic infections.

Irving Weismann and colleagues were the first to report the hierarchical view of myeloid 
progenitors based on clonogenic and transplantation assays[45]. The myeloid cell progenitors 
in murine bone marrows are characterized by cell surface markers and are subdivided 
into three Lineage-ve cKIT+ve Sca-1-ve (LK) subsets: namely the CD16/32Low CD34+ve common 
myeloid progenitors (CMPs) which give rise to CD16/32High CD34Low granulyocytic/monocytic 
progenitors (GMPs) and CD16/32-ve CD34-ve megakaryocytic/erythroid progenitors (MEPs)
[45]. They defined the CMP as the earliest myeloid progenitor since it has the potential to 
give rise to all myeloid cells[45]. The MEP population is more restricted to megakaryocytes 
and erythrocytes, whereas the GMP is more heterogeneous and mainly diverges to 
granulocytic and monocytic lineages [47, 48]. Dendritic cells are more of an independent 
myeloid cell entity, although dendritic myeloid progenitors also overlap with monocytic 
differentiation [49-53]. This constructed hierarchy is based on cell surface markers that 
define highly heterogeneous bone marrow progenitor cell populations. The impact of these 
marker-defined subsets on myelopoiesis in vivo will be discussed in the next sections. 

1.16	 �Transcription factors in myelopoiesis: the concept of synergism and cross-
antagonism in cell lineage fate decisions

Bone marrow transcription factors belong to a wide spectrum of transcription factor 
families that interact with accessible DNA sequences in regulatory elements to control gene 
expression. HSC and MPPs (or HSPCs) share a common TF complex composed of a so-called 
heptad of TFs including RUNX1, GATA-2, ERG, TAL1, LMO2, LYL1, FLI1[26, 42, 43]. This heptad 
of TF complexes binds to loci of genes encoding transcription factors essential for myeloid 
development, such as C/EBPa, PU.1, IRF8, GATA1 and GATA2, which drive lineage specific 
differentiation.

Many cell-lineage specific TFs are expressed at low levels in bone marrow myeloid 
progenitors. TFs compete or act synergistically in so-called transcription factor complexes 
to drive differentiation of any specific lineage [54]. In GMPs, the major TFs responsible 
for neutrophilic, monocytic and dendritic cell differentiation are C/EBPa, PU.1 and IRF8, 
respectively. These three represent classical examples where synergistic regulation takes 
place between PU.1 and IRF8 to support monocytic and/or dendritic cell differentiation[55], 
whereas C/EBPa antagonizes both PU.1 and IRF8 (and vice versa) to induce neutrophil 
differentiation[56-59]. In downstream progenitors of the GMPs, C/EBPa also activates the 
basophil gene expression program and antagonizes mast cell differentiation in the basophil/
mast-cell bi-potent progenitor [60]. Moreover, lineage fate decisions between eosinophilic 
and basophilic progenitors are driven by cross-antagonism between C/EBPa and GATA2 [60, 
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61]. In addition, the GATA transcription factors GATA1 and GATA2 counteract each other 
in MEPs to differentiate into erythroid and megakaryocytic lineages, respectively [62, 63]. 
Based on ectopic expression of any of these factors in bone marrow progenitors or in cell 
line models, it is concluded that lineage fate determination is based on TF dosage that 
need to exceed a certain expression threshold to favor one lineage over the other[64-66]. 
However, this concept has largely been questioned and can possibly be replaced by recent 
findings using single cell technologies showing that a single TF might be responsible to drive 
differentiation of one cell lineage. In fact, single-cell technologies are revolutionizing and 
contradicting previous reports stating that cell fate decisions are based on syngergistic and 
antagonistic actions of transcription factors.

1.17	 Challenging hierarchical vs unilineage hematopoiesis
In the last two decades, efforts has been made to understand the hematopoietic hierarchy 
based on the instructive force of lineage specific transcription factors in differentiation 
[67]. As stated in the previous section, TFs act together in synergy to bind enhancers and 
promoters and consequently activate genes required for lineage specific differentiation. 
However, the biology and dynamics of transcription factor complexes was majorly studied 
in immortalized cell line models, which, although they overcome limitations associated with 
cell numbers, may not reflect the function of TFs during differentiation in vivo. The advent 
of new technologies to study lineage tracing combined with single-cell RNA technology has 
challenged the concept of hierarchical hematopoiesis and the concept stating that TFs act in 
synergy or compete with each other to drive cell differentiation in the bone marrow [68, 69]. 

Dissecting the heterogeneous pool of myeloid progenitors using single-cell transcriptomics 
and lineage tracing, Ido Amit and colleagues showed that immune-phenotypic CMPs, GMPs 
and MEPs can be clustered into 19 different sub-populations. Each sub-population is driven 
by a lineage specific TF with no evidence that cell lineages exhibit transcription factors that 
compete for lineage differentiation as was previously thought [70]. This study opened up 
new frontiers in understanding how lineage specification takes place. It is now recognized 
that cell lineage commitment within the myeloid fate occurs at earlier stages than previously 
recognized [71-73], and lineage specific transcription factors are responsible to drive the 
differentiation program along with downstream TFs to support terminal differentiation [70]. 
The single cell approach used in the study by Paul et al [70], revolutionized the concept 
of myeloid hierarchy and shifted the line of thought towards unilineage myelopoiesis (See 
Figure 3). 

The next section describes in detail how C/EBPa, the transcription factor under investi-
gation in this thesis, plays a major role in neutrophilic differentiation and how its function is 
required to activate the neutrophilic gene expression program in the bone marrow.
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1.18	 C/EBPα in myelopoiesis and differentiation in the bone marrow
The CEBP leucine zipper family consists of six DNA binding proteins that share a highly 
conserved bZIP DNA-binding domain at the C-terminus. The family members are named 
alphabetically in C/EBPα, C/EBPβ, C/EBPδ, C/EBPε, C/EBPγ and C/EBPζ, [74-76]. Most of the 
CEBP proteins share a transactivation domain at the N-terminal site and its main function is 
to recruit general transcription factors to modulate gene expression of downstream target 
genes. C/EBPa was the first transcription factor of the CEBP family to be identified. The 
other CEBPs, including C/EBPβ, C/EBPδ, C/EBPε and C/EBPγ have all been implicated in 
myelopoiesis as well [77, 78]. Here I will focus on the role of C/EBPa in myelopoiesis, which 
is discussed in more detail in Chapter 2.

The function of CEBPA has been studied in different tissues including the liver, adipose, 
lung and the bone marrow[79]. Its function in the bone marrow is clearly associated 
myelopoiesis and with defects in this lineage upon germ-line knockout of the Cebpa gene 
in a murine model[80]. Using flow-cytometric analysis, it was found that the granulocytic 
program was halted and differentiation was blocked between the CMP to GMP stage, thus 
concluding that C/EBPa is indispensable for neutrophilic differentiation at a stage beyond 
the generation of CMPs [80-83]. 

Ido Amit and colleagues challenged these previous findings and concepts[70]. They 
investigated the transcriptional continuum of the neutrophilic differentiation program, 
from initiation to termination, by using C/EBPa (initiation) and C/EBPε (termination) 
knockout mouse models. Single cell transcriptomic analysis of bone marrow cells from C/
EBPa knockout mice demonstrated the absence of neutrophil lineage priming activation 
and a complete abrogation of the neutrophilic cluster. In C/EBPε knockout bone marrow, 
a block of the neutrophilic differentiation was observed at a pre-terminally differentiated 
stage, which did not affect the priming and initiation of the neutrophilic program [70]. This 
suggests that C/EBPa initiates neutrophilic differentiation at earlier stages than the CMP, in 
contrast to what has been concluded by Tenen and colleagues[80, 84] and the accumulation 
of CMP progenitors observed are most probably myeloid fate progenitors that are primed to 
differentiate into myeloid cells other than neutrophils. 

C/EBPa activates genes that make up the neutrophil gene expression program. C/EBPa 
binds to many genes that encode important functional components for neutrophils such 
as GCSF receptor; growth factors and interleukins including, GCSF, IL-1b, IL-6, IL-8, IL-12; 
intracellular enzymes required to fight pathogens such as lactoferrin, lysozyme, COX-2, MIP-
1a, MIP-1b, myeloperoxidase, and neutrophil elastase[85-91]. 

Like any other transcription factor, C/EBPa utilizes mechanisms to regulate the expression 
of genes such as accessibility of chromatin[92], recruitment of ATP-dependent chromatin 
remodelers[93, 94] and changes in chromatin topology and chromatin states with regards 
to histone modifications[95, 96]. 
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Figure 3. Emerging concept of uni-lineage myelopoiesis. In this model adult bone marrow establishes myeloid 
biased cell lineages, where every single single cell is derived from a specific pre-programmed progenitor cell. 
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1.2        CHROMATIN AND TRANSCRIPTIONAL REGULATION

1.21	 Introduction
Extracellular cues drive signaling pathways inside cells and orchestrate nuclear factors 
to modulate chromatin structure and function [97-99]. Nuclear factors fall into a wide 
spectrum of functional quaternary structural proteins [7, 100]. In the following sections 
I will focus on (1) the chromatin architecture and how it relates to function in terms of 
gene expression regulation, (2) how nuclear factors, which are sub-classified into chromatin 
factors and transcription factors, orchestrate the genome structure to drive differentiation 
in hematopoiesis and (3) how mutations in any of these factors perturb their function with 
consequences for phenotypic changes and the onset of diseases.

1.22	 The fundamental components of chromatin
The histone octamer is composed of two copies of H2A, H2B, H3 and H4 histone proteins, 
which are wrapped around 147bps of DNA. Heterodimerization of histones is first initiated 
between H3 and H4, followed by H2A and H2B heterodimers causing strong interactions 
between the octamers that are further stabilized by the H1 linker histone to form a bigger 
histone-DNA complex structure called the nucleosome [101](See Figure 4a). 

Change in nucleosomal structure is under the influence of post-translational 
modifications occurring at specific amino acids[102], either within the core (histone 
globule)[103] or at the positively charged N-terminal tails that protrude from the outside 
of the histone octamers [104](See Figure 4b). These modifications include acetylation, 
methylation, phosphorylation, ubiquitination and sumoylation. In particular, the N-terminal 
tails of histone 3 and histone 4 are highly susceptible for histone modifications [105-109]. 
Previous studies investigated profoundly the possibility of lysine residues to become 
modified at the N-terminal tail of histone 3 which include Lysine 4 (H3K4), H3K9, H3K27 and 
in core or globular domain histone 4 including H4K5, H4K8, H4K12, H4K16 [110]. Lysines are 
modified by the addition of small chemical moieties such as acetyl residues from acetyl CoA 
and catalyzed by active histone acetyl-transferases (HATs), known as writers. This process is 
called lysine acylation. HATs fall into a large family, which based on cellular localization are 
classified as type A and type B. The type A HATs are located in the nucleus and they play a 
major role in different DNA based mechanisms such as transcription, DNA replication and 
DNA repair. The type A HATs are subdivided into five sub-classes based to their homology. 
For instance, the MYST family members include Tip60, HBO1, HMOF, MOZ and MORF; the 
GNAT (GCN5-related N-acetyltransferases) subgroup that includes PCAF, GNC5 and ELP3; 
and the CBP/p300 family [111-116]. The type B HATs are localized in the cytoplasm and their 
major role is to modify nascent histones [117, 118]. The large family of histone deacetylases 
(HDACs) acts as erasers of acetylated lysine residues from modified histones. 
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In addition, lysines are also susceptible for methylation by histone methyl-transferases. 
Like HATs, lysine histone methyltransferases (KMTs) are subdivided into two major 
subgroups, but based on the presence or absence of a so-called a SET domain. KMTs with 
the SET domain include MLL, EZH2, NSD1 and G9a. These KMTs methylate a wide-array of 
lysine residues on histone H3 including K4, K9, K27 and K36, and on H4K20. Like acetylation, 
histone methylation may be erased by demethylases, including LSD1 and UTX [118, 119]. 

These modifications eventually change the nucleosomal dynamics and function i.e. it 
may result in either open chromatin or closed chromatin. Open chromatin allows for nuclear 
proteins such as ATP-dependent chromatin remodelers and transcription factors to bind and 
interact with DNA[120]. This accessibility and histone modifications define genes and their 
regulatory elements such as promoters, enhancers, silencers and insulators, and have a 
direct impact on gene regulation and transcriptional control by orchestrating the interaction 
of nuclear factors with chromatin[121-123].  

1.23	 �Chromatin and transcriptional control: active gene loci engaging into active 
chromatin loops

The modifications present on histones determine whether a gene or a regulatory element 
is accessible, activated or deactivated. Many histone modifications have been associated 
with transcriptional activity [120, 124]. Figure 5 prov ides a schematic representation 
of how histone marks at nucleosomes shape the genome and relate to gene regulation. 
The MLL protein complex deposits H3K4me3 histone marks at active gene promoters 
[125, 126].  Active gene promoters signal the recruitment of the general transcription 
components such as RNA polymerase and the basal transcription pre-initiation complex 
(TFIID, TFIIB, TFIIH, TFIIF, TFIIE, and TFIIA) [127-129]. The TATA binding proteins (TBP), 
which specifically recognizes elements in promoters known as TATA boxes, recruit all the 
transcription components to initiate transcription of the corresponding genes found at the 
closest proximity of the protein-loaded promoter [130]. However, gene promoters require 
additional regulatory elements such as enhancers for sufficient transcriptional output.

Enhancers are defined as DNA conserved sequences of 200-500bps in length, which 
contains clustered recognition sites for transcription factor binding[131]. Enhancers define 
tissue specificity based on their activity in gene regulation (See Fig.4c). The most studied 
active histone marks for enhancers are the H3K4me1, H3K27ac and H3K9ac deposited by 
MLL, CBP/p300 and PCAF/GCN5, respectively [132]. H3K4me1 is associated with molecular 
priming of genomic loci[133] whereas H3K27ac and H3K9ac are associated with long-term 
enhancer activity. H3K27ac is a mark for potentially active enhancers to which transcription 
factors may bind via specific DNA motifs and form complexes with RNA polymerases, trans-
criptional co-activators and chromatin readers. Chromatin readers (e.g. BRD4, BRG1, CHD7, 
and TIP60) bind to modified histones and enhance long-term activity of the enhancer [134]. 
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Figure 4. Nucleosomes and histone modifications near enhancers. (a) The nucleosome is composed of ~147bps 
of DNA wrapped around an octamer of histones. All histone proteins, i.e. H2A, H2B, H3 and H4 exists as a dimer 
to then form together an octamer. Nucleosomes are susceptible to histone modifications that mainly occur at the 
N-terminal tails. Few examples of active histone modifications are illustrated in blue whereas repressive histone 
marks are illustrated in red. (b) Histone modifications dictate the compaction and re-compaction of nucleosomes 
that occur at enhancers. H3K27me3 is a mark for closed chromatin. Open chromatin shows H3K27 acetylation 
(H3K27ac). (c) Nucleosome-free and histone active non-coding regions such as enhancers, allow accessibility 
and recruitment of nuclear proteins to bind and regulate gene expression in a tissue-specific fashion. Different 
examples showing that tissue specific enhancers bind lineage-specific transcription factors, as illustrated with 
corresponding colors.
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An additional feature of active enhancers is the production on-site non-coding RNA 
transcripts known as eRNAs that occur as bi-directional or unidirectional and non-
polyadenylated.  Emerging roles for eRNA in transcriptional control include recruiting 
and enhancing transcriptional co-activators[135], exosome-dependent RNA turnover to 
modulate enhancer activity[136] and involvement in higher-order chromatin regulation and 
organization of chromatin loops[137].

Enhancers are usually located distantly from their corresponding genes. However, in the 
nuclear three-dimensional space, active enhancers engage with genes and their promoters 
and relocate at close proximity to modulate transcriptional output by forming chromatin 
loops [138, 139]. This chromatin loop formation occurs at active gene loci and each loop 
is anchored by architectural proteins such as CTCF or cohesin[140-142]. Chromatin loop 
formation occurs when two CTCF-bound DNA regions (motifs) on DNA are in a converging 
position and ready to move towards each other while extruding out a chromatin loop, which 
engages promoters, their genes and their corresponding enhancers[143, 144]. The cohesion 
complex forms a ring structure around the anchors to secure its conformation[145-147]. 
These chromatin loops do not occur randomly but are contained into structural domains 
called topological associated domains (TADs). Each TAD size varies between 200kb to 1Mb 
of genomic DNA and one TAD is separated from adjacent ones by TAD-insulated borders, 
also bound by CTCF and cohesion (~85% of the genome)[148-150]. CTCF and cohesin also 
bind inside TADs, dividing genes into independent chromatin loops or sub-TADs [151-153].

Multiple adjacent TADs form high order chromatin structures highly organized into 
chromosomes[138]. During interphase, the TAD-structure per chromosome maintains 
its boundaries to remain intact by forming chromosome territories [154](See Figure 6). 
This high-order organization of intact chromatin folding per chromosome is based on the 
biophysical properties of the 30nm DNA fiber[138], which allows chromatin to fold into a 
nuclear diameter of 5 to 10um and promote mechanisms such as DNA repair, replication 
and transcription to take place in the nucleus[155-157].

The organization, structure and function of the genome is under tight regulation 
during development and in adult-life[142]. Any changes in function caused by mutations 
occurring in genes encoding major components that safe-guard the genome, such as 
transcription factors and chromatin regulators, or mutations in the non-coding elements 
where most of the regulatory part of the genome resides, predispose cells to the onset of 
malignancy[158-160].
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1.3	 C/EBPα in acute myeloid leukemia (AML)
AML is a highly heterogeneous disease of the bone marrow involving immature committed 
myeloid progenitors, called blast cells[161]. The two main characteristics that features 
AML include, bone marrow progenitors blocked in myeloid differentiation and outgrowth 
of these myeloid progenitors that suppress normal hematopoiesis[162]. Many driver 
mutations have been reported in the last decade in AML patients [163-166]. These mutations 
generate oncoproteins that halt the myeloid gene expression program by interfering with 
transcription of downstream target genes involved in cell-cycle and differentiation, or by 
deregulating post--transcriptional events [163]. Commonly mutated genes encode the 
following proteins include NPM1, FLT3, DNMT3a, K/N-RAS, IDH1/2, C/EBPα, RUNX1, KIT, 
fusion proteins generated by translocations such as RUNX1-ETO, PML-RARA, CBFb-MYH11, 
and MLL gene fusions [163

Oncoproteins in AML are generated by recurrent mutations either in coding sequences 
of genes [167], or in the non-coding genome [168] that leads to gene deregulation. The most 
common transcription factor involved in recurrent chromosomal abnormalities is RUNX1 or 
its counter-part CBFb [169-172]. Fusion oncoproteins generated by translocations, such as 
AML1-ETO in AML with a translocation t(8;21) or AML1-EVI1 in patients with a translocation 
t(3;21), deregulate the differentiation-mediated function of RUNX1 and disturb the 
transcriptional program of normal myeloid differentiation[134]. Point mutations in RUNX1 
gene also lead to an abnormal RUNX1 protein function, which is normally detected in 
very immature AMLs with an undifferentiated phenotype[173-176]. Mutations involving 
the MLL methyl-transferase generates fusion genes with more than 80 partner genes 
involved[177-179]. These fusion oncoproteins consists of an abnormal MLL protein with 
a defective myeloid transcriptional program and acquires a self-renewal signature, which 
results in a full-blown leukemia in mice[160, 180, 181]. 

In AML C/EBPα is mutated in around 10% of the cases [182]. However, several reports 
have shown how several oncoproteins (mentioned above and in more detail in Chapter 2) in 
AML target the CEBPA gene or protein and abrogate its function[183]. Mechanisms of action 
of how C/EBPα is deregulated in AML at different levels of gene expression are explained 
in more detail in Chapter 2 of this thesis. In chapter 5 of this thesis we will discuss how the 
translocation t(8;21) in AML deregulates CEBPA expression.
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Figure 5. Chromatin components of transcriptional regulation. Extracellular factors engage with cell surface 
receptors to initiate a cascade of signaling through the nucleus via cytoplasmic signal effector molecules. Once 
inside the nucleus, signaling effector molecules activate nuclear proteins such as chromatin modifiers and 
transcription factors to regulate gene expression. Chromatin modifiers and transcription factors free nucleosomes 
at gene promoters and enhancers to allow proteins of the transcription machinery to bind and activate gene 
expression. Chromatin modifiers deposit and read post-translational modifications such as H3K4me3 at gene 
promoters and H3K27ac and H3K4me1 at enhancers. Together with nuclear proteins, enhancers and genes come 
into close proximity upon chromatin looping a feature of transcription activation. 
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SCOPE OF THIS THESIS

The main objective of this thesis is to dissect the mechanisms involved in the gene regulation 
of CEBPA during normal and malignant hematopoiesis. Using a diverse range of molecular 
technologies combined with genome editing, in vitro and in vivo models were generated to 
answer questions and test for different hypotheses. 

In Chapter 2, a perspective review discusses current issues concerning transcriptional 
mechanisms on how CEBPA is (1) regulated in different myeloid cells and in long-term 
hematopoietic stem cells and (2) deregulated in myeloid malignancies. These questions 
were supported by experimental approaches in models generated to study gene regulation 
in hematopoiesis.

In Chapter 3 we focused on the transcriptional control of CEBPA in normal hematopoiesis. 
Using chromatin profiling in human and mouse cell types, a potential myeloid CEBPA-
enhancer was identified and its function was investigated in cell line and in vivo models to 
understand its role in transcription regulation of CEBPA and how its loss of activity influences 
the whole hematopoietic system. 

In Chapter 4 and 5 we investigated for mechanisms related  to low CEBPA expression levels 
in AML. In Chapter 4 we focused on enhancer deregulation by (1) investigating for the 
presence of potential DNA mutations in the CEBPA locus in Chapter 4, and (2) investigating 
for epigenetic and chromatin state deregulation by the AML oncoprotein AML1-ETO in 
Chapter 5. 

In Chapter 6 we experimentally investigated whether loosing long-term 
hematopoietic stem cells in our neutropenic Cebpa-enhancer knock out model is a cell 
autonomous event caused by loss of Cebpa expression in LT-HSCs or whether it involves an 
extrinsic mechanism involving neutropenic bone marrow progenitors, HSC exhaustion and 
the microenvironment

In the final chapter we summarize the findings of this thesis followed by a discussion on 
how to further investigate and unveil more transcriptional control layers of CEBPA in 
health and disease.
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ABSTRACT	

One of the most studied transcription factors in hematopoiesis is the leucine zipper CCAAT 
enhancer binding protein alpha (C/EBPα), which is mainly involved in cell fate decisions for 
myeloid differentiation. Its involvement in acute myeloid leukemia (AML) is diverse, with 
patients frequently exhibiting mutations, deregulation of gene expression or alterations in 
the function of C/EBPα. In this review, we emphasize the importance of C/EBPα for neutrophil 
maturation, its role in myeloid priming of hematopoietic stem and progenitor cells and its 
indispensable requirement for AML development.  We discuss that mutations in the ORF 
of CEBPA lead to an altered C/EBPα function, affecting expression of downstream genes 
and consequently deregulating myelopoiesis. The emerging transcriptional mechanisms of 
CEBPA are discussed based on recent studies. Novel insights on how these mechanisms may 
be deregulated by oncoproteins or mutations/variants in CEBPA-enhancers are suggested 
in principal to reveal novel mechanisms of how CEBPA is deregulated at the transcriptional 
level. 
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INTRODUCTION 

Lineage specific transcription factors (LTFs) prime chromatin states of hematopoietic 
stem/progenitor cells (HSPCs) to drive commitment and differentiation of specific cell 
types in the bone marrow [1]. One of the most studied lineage specific TFs involved in 
hematopoietic development is CCAAT enhancer binding protein alpha (C/EBPα), a leucine 
zipper transcription factor mainly involved in myeloid development. C/EBPα has been 
reported to be involved in monopoieisis and granulopoiesis. The mechanism of action of C/
EBPα and the interaction with other leucine zipper proteins driving monopoiesis has been 
extensively reviewed previously [2]. Here we particularly focus on the role of C/EBPα in 
early hematopoietic development, granulopoiesis and malignant transformation of myeloid 
progenitor cells. C/EBPα is the founder of the C/EBP family of transcription factors, consisting 
of C/EBPα, C/EBPβ, C/EBPδ, C/EBPε, C/EBPγ and C/EBPζ, which are named according to 
their order of discovery[3-12]. All CEBP members share a similar C-terminal domain for 
DNA binding and dimerization but differ in the N-terminal domain, with CEBPA possessing 
two transactivation domains for transcription control and protein interactions. The CEBP 
family of TFs are involved in many different biological pathways, which has been discussed 
elsewhere[13].

Here we focus on the importance of C/EBPα as a major TF of the neutrophilic 
differentiation program, and how it is recognized as an indispensable factor for the initiation 
of acute myeloid leukemia (AML). At the same time, frequent aberrations deregulating 
C/EBPα function or expression are observed in different AML subtypes. Based on recent 
findings, we will discuss the transcriptional control driven by a specific enhancer regulating 
CEBPA in the bone marrow, followed by the potential role of this enhancer to be hijacked by 
different AML-related onco-proteins to deregulate CEBPA expression. By placing C/EBPα at 
the center of the myeloid lineage hierarchy, this review offers a perspective on C/EBPα as 
a target of diverse physiological and oncogenic events, which ultimately contribute to the 
onset or development of AML.

Expression and regulation of C/EBPα in normal myelopoiesis and in malignant transformation
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C/EBPα IN NORMAL AND MALIGNANT MYELOID PRIMING AND 

DEVELOPMENT 

The non-redundant role of C/EBPα for neutrophil development. 
CEBPA is an intron-less gene located on chromosome 19q in humans and on chromosome 
7 in mice, which encodes a 42KD and a 30KD DNA binding protein, both derived from the 
same gene but translated from two distinct AUG translational start sites (Figure 1).  

Chromosome 19 Chromosome 19

Wild Type Bi-allelic mutations in AML

C/N terminal Mutations N/N terminal Mutations

TAD TAD bZIP p42

TAD bZIP p30 TAD bZIP p30
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Figure 1: CEBPA is located on chromosome 19q.32. From the CEBPA mRNA two major proteins are generated from 
two distinct AUG start sites, i.e. a p42 and a p30 isoform  (1a). CEBPA may be transcribed  from the two alleles 
(Allele A. Bi-allelic mutations in CEBPA may occur at the N-terminus or at the C-terminus (C/N mutation). Patients 
with a C/N double mutation generate a p30 isoform only from one allele (termed allele 1) and bZIP mutated p42 
and p30 isoforms (red) from the other allele (1b). Bi-allelic mutations at the N-terminal (N/N) generates only p30 
isoforms but not p42 isoforms (1c). Bi-allelic mutations at the C-terminus (C/C) generate p42/p30 C-terminally 
mutated isoforms from both alleles, all defective in the bZIP domain (1d). CEBPA double mutant leukemias never 
express a wild type p42 protein. TAD=Transcription Activating Domain. bZIP= Basic Leucine Zipper Domain. I=N-
terminal mutation; I= C-terminal mutation.

Besides its role in the bone marrow, C/EBPα is also essential for the development of 
other organs, such as lung, liver, intestine and female reproductive organs[14-21]. In the 
hematopoietic system, C/EBPα is primarily expressed in cells of the myeloid lineage. Zhang 
and colleagues were the first to show that germ-line deletion of Cebpa in mice causes a 
block in neutrophil differentiation in bone marrow[19]. This model limited the study of C/
EBPα in adult hematopoiesis, since mice died of lung and liver complications shortly after 
birth. By generating an Mx1-Cre driven conditional knock-out mice, it was demonstrated 
that the excision of Cebpa in the bone marrow of adult mice failed to generate granulocyte/
monocyte progenitors and resulted in a complete block of neutrophilic development at the 
CMP (common myeloid progenitor) stage[22]. 

During cell fate decisions, C/EBPα primes and activates the myeloid gene expression 
program by binding promoters or enhancers of myeloid-related genes such as CSF3R, IL-6R, 
CEBPE, GFI-1 or KLF5[23-26], in mouse models as well as in human CD34+ HSPCs of either 
cord blood or leukemic origin [27, 28]. C/EBPα competes with other transcription factors 
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to attenuate the expression of non-myeloid lineage genes in progenitors of multi-lineage 
potential [29-31]. In support with this latter observation, murine HSPCs isolated shortly after 
Cebpa deletion lose the expression of certain myeloid genes and recapitulate the expression 
of T-cell genes such as Cd7 or Lck, suggesting a switch towards a myeloid/T-lymphoid 
phenotype. This mixed myeloid/T-lymphoid phenotype is also observed in a rare CD34+ 
leukemia subtype in humans, in which CEBPA is silenced by DNA hyper-methylation[32]. 

This early phenotype observed upon CEBPA deactivation in murine models and human 
leukemia, indicates that (1) C/EBPα has a critical role in regulation of myeloid gene expression 
at an early hematopoietic stage, and (2) it acts as a repressor of non-myeloid genes. Both 
observations are discussed further in the coming sections and supported by in vitro and in 
vivo models.   

Myeloid priming of hematopoietic stem cells by C/EBPα. 
Given its probable function as a pioneer transcription factor[33, 34], at which stage of 
differentiation does C/EBPα prime the myeloid genome? Porse and colleagues conducted 
chromatin studies in murine cKit+ CD150+ long term HSCs (LT-HSCS) to show that C/ebpα 
binds to chromatin at loci of myeloid associated genes before they are marked by active 
chromatin modifications [34]. This suggests that C/ebpα binds and primes genes for myeloid 
commitment. A number of studies suggest that C/ebpα may act as a pioneer transcription 
factor in cooperation with other transcription factors, such as Pu.1 or Runx1, to prime the 
myeloid gene expression program at very early stages of hematopoiesis [33].

Wolfler and colleagues generated a Cebpa-Cre/YFP reporter mouse and reported that 
C/ebpα is expressed in less than 10% of the cKIT+CD150+ defined LT-HSCs population in the 
bone marrow [35]. These findings are in line with recent published data from the groups of 
Ido Amit and from Paul Lee Grimes, who conducted single cell RNA sequencing and found 
that a small proportion of bone marrow HSPCs expresses Cebpa [36, 37].  

In addition to the block in myeloid differentiation, the conditional Cebpa knockout 
mouse model by Tenen and colleagues shows that LT-HSCs exit from quiescence, increase 
in cycling and expansion [22, 38]. On the other hand, the conditional Cebpa knockout 
mouse model by Porse and colleagues showed that LT-HSCs undergo exhaustion and 
increase in apoptosis [34]. These studies may seem conflicting, but these differences are 
most probably due to the dissimilarity in timing of the analysis of these mice. In parallel 
with these findings, a severe quantitative loss of LT-HSCs has also been reported in two 
separate studies in which a myeloid specific (+37kb) CEBPA-enhancer was deleted [39, 40]. 
Therefore, phenotypically, it is very clear that reduced Cebpa expression, either by deleting 
the Cebpa gene or the Cebpa-enhancer, exerts detrimental effects on the frequency of  
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LT-HSC population. Interestingly, to investigate whether reduced Cebpa levels also influence 
the function of HSCs, transplantation experiments of CEBPA-enhancer deleted bone marrow 
cells in recipient mice, showed no difference in the frequency of LT-HSCs when compared 
to controls 19 weeks post-transplantation, which can be explained by residual Cebpa levels 
present after enhancer deletion. In fact, transplantation of bone marrow cells exhibiting 
complete ablation of Cebpa expression from Cebpa knockout mice showed 20-fold reduction 
in LT-HSC numbers at 16 weeks post-transplantation [34]. Altogether these findings suggest 
that C/EBPα is required to maintain the integrity of HSCs and hence the hematopoietic 
system.
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Figure 2: C/EBPα when expressed in early hematopoietic stem and progenitor cells primes and drives myeloid 
differentiation leading to the production of neutrophils (N). We hypothesize that downregulation of C/EBPα in the 
bone marrow in mice results in the following phases. The early phase: block of neutrophilic differentiation causes 
a feedback mechanism on hematopoietic stem cells (HSCs) and progenitors to stimulate more differentiation. 
This results  in increased in cycling of (HSCs) and expansion of downstream progenitors (MPP: Multi-Potent 
Progenitors; CMP: Common Myeloid Progenitors). Advanced phase: HSCs are consumed, while progenitors still 
show expansion. Late phase: HSC and progenitor exhaustion leading to bone marrow failure. GMP: Granulocyte 
Macrophage Progenitor.
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Together these results all point towards the importance of C/ebpα for the maintenance 
of the bone marrow HSC integrity, and raise further an important question: why does the 
loss of Cebpa in mice in only a subset of stem/progenitor cells, influences the behavior 
of the HSC/progenitor compartment, including Cebpa-HSC/progenitor cells? Possibly, a 
feedback mechanism is activated to stimulate the generation of additional myeloid primed 
progenitors and compensate for the loss of the granulocytic lineage. This would lead to 
HSC exhaustion caused by an induced HSC response to exit from the quiescence state and 
undergo cell division to generate sufficient myeloid progenitors (Figure 2). It could also be 
that the loss of such a critical transcription factor might alter the cell to cell communication 
between the Cebpa+ HSPC compartment and the bone marrow microenvironment, which 
further imposes a global effect on the HSC population[41]. To understand the mechanism 
of action of the above-proposed ideas, further experimental investigations are required. 
Knocking out Cebpa at a later stage of myeloid commitment, such as in CMPs, would provide 
a sufficient time-frame to monitor the biological response of the HSCs to compensate for 
the loss of granulopoiesis in a time dependent manner. Transplantation of Cebpa knockout 
stem/progenitor cells into sub-lethally irradiated wild type recipient mice provides 
another possibility to study whether these Cebpa knockout cells stimulate HSC exhaustion 
resulting in bone marrow failure. These models should also address the involvement of the 
microenvironment, and whether stromal and endothelial cells from the transplanted host 
become susceptible to alterations that ultimately influence the HSC population. Whether 
the proposed events are also a hallmark in human disease, is yet to be investigated.

C/EBPα in myeloid reprograming and cell fate decisions. 
Trans-differentiation studies by Graf and colleagues previously showed that when an 
estrogen-inducible C/EBPα-ER is expressed in a non-myeloid bone marrow cell, acts in 
synergy with other transcription factors to induce myeloid differentiation. They showed that 
C/EBPα, in collaboration with PU.1 or C/EBPβ, reverses the lymphoid phenotype of B-cell 
or T-cell progenitors into myeloid progenitors to eventually differentiate into monocytes/
granulocytes in vitro[42, 43]. Whether the cell commits to one cell type or another, depends 
on the transcription factor network that is available within the cell under investigation. In 
the presence of the Yamanaka factors (Oct4, cMYC, KLF4 and SOX2)[44], C/EBPα poises B 
cells rapidly into induced pluripotent stem cells by first generating GMPs [33, 45-48]. Other 
studies showed that C/EBPα is also capable to transdifferentiate non-hematopoietic cells 
into various cell types. For example, fibroblasts can be transformed into myeloid progenitors 
by C/EBPα in the presence of PU.1 or into adipocytes in the presence of PPARgamma and 
SREBP-1[49-52].

The repressive role of C/EBPα in hematopoiesis is less understood. Previous studies 
have shown that C/EBPα induces cell cycle exit coupled with differentiation, by repressing 
cell cycle related transcription factors including Myc [53] and c-Jun[54, 55]. A recent study 
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showed that C/EBPα repress the B-cell lineage genes by forming a complex with chromatin 
modifying proteins including LSD1 and HDAC1 [46]. Such mechanism might also be applied 
in other cell types since progenitors from Cebpa knockout mice exhibit upregulation of 
T-cell related genes, such as Cd7 and Lck, while C/EBPα retroviral re-introduction in these
progenitors attenuated the expression of these genes to drive myeloid differentiation[32].

During cell fate decisions, Cebpa is negatively regulated by other non-myeloid factors 
to exclude the myeloid differentiation program. De Obaldia et. al reported that in mouse 
bone marrow, C/ebpα expression is repressed by the Notch1-target Hes1. Interestingly, 
they showed that T-cell development in Hes1 deficient progenitors was restored upon C/
ebpα deletion , indicating that C/ebpα acts as a main repressor of T-cell development[56]. 
Moreover, Rothenberg and colleagues have shown that Cebpa expression in the thymus 
is lost during T-cell commitment by an extensive increase of a repressive histone mark 
deposition in the Cebpa locus[57]. 

In summary, C/ebpα is a potent differentiation mediator in different cell types, especially 
for the myeloid lineage. Its importance in activating the myeloid program is indispensable 
to generate GMPs from any cell type, which occurs only in the presence of other pioneer 
myeloid factors such as Pu.1. In addition, Cebpa is one of the primary targets to be shut down 
by other lineage specific transcription factors in order to exclude myelopoiesis, emphasizing 
its important role as a granulocytic differentiation transcription factor.

C/EBPα in AML initiation and development.  
It has long been observed that AML is initiated in myeloid committed progenitors. [58, 59] 
Cozzio and colleagues, demonstrated that murine CMPs and GMPs that were transduced with 
MLL-ENL fusion gene acquired leukemogenic potential in vitro and in vivo[60]. Based on the
myeloid progenitor potential of generating in vitro serial replating and serial transplantation
with minimal cell numbers in vivo, these cells were termed leukemic stem cells (LSCs). Such
LSCs with a strong leukemogenic potential were also later confirmed when the MLL-AF9
fusion oncoprotein was retrovirally transduced in mouse GMPs[61].  Interestingly, such
leukemic GMPs shared identical gene expression profiles with wild type GMPs, but acquired
a self-renewal gene expression program to propagate in vitro and in vivo[61]. Leukemic blasts
from Cebpa biallelic mutant knock-in mice share an identical gene expression program as
these MLL-AF9 transduced leukemic GMPs [62]. Collectively, these findings indicate that a
myeloid differentiation program is required to initiate myeloid leukemia.

Moreover, such findings raise paradoxical questions whether the expression of C/EBPα, 
which may act as a tumor suppressor protein, is also required for the initiation of leukemia. 
Gene expression profiles of AML patient cells showed that CEBPA is sufficiently expressed 
at the mRNA level in all AML subtypes, except for one subgroup with a myeloid/T-lymphoid 
immunophenotype [32]. Although this needs confirmation at the protein level, such 
observations indicate that AML requires an adequate degree of differentiation by involving 
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C/EBPα, at least at early stages of leukemic initiation. Bo Porse and colleagues used the MLL-
ENL and MLL-AF9 mouse model to test this hypothesis. Elegantly, they compared the degree 
of leukemogenesis exhibited by these two fusion oncoproteins in a Cebpa wild type and 
Cebpa knockout background. The latter failed to generate any leukemia both in vitro and also 
in vivo[34]. They confirmed that once the leukemia was propagated in the Cebpa wild type 
mice, it did not matter anymore whether Cebpa was expressed or not, thus confirming the 
role of C/EBPα in AML initiation as a differentiation mediator, but not for AML maintenance.

Using similar mouse models, a recent study by Ye et al. confirms these findings. In addition, 
they show that by administering the growth factors IL-3 or GM-CSF, the MLL fusion onco-
proteins induce myeloid leukaemia even in the absence of C/ebpα [63]. Thus, a divergent 
pathway may take over the C/ebpα pathway when enhanced signalling is introduced by the 
ectopic addition of myeloid growth factors, even when C/ebpα is not expressed. Possibly, 
this divergence is via a redundant pathway that takes place in cases of ‘emergency’, and the 
main factor known to be responsible for similar events in granulopoiesis is the other CEBP 
family member C/ebpβ [64]. Thus, these findings wrap up the whole concept that leukaemia 
develops only if sufficient degree of differentiation is present, with C/EBPα being one of the 
important factors for AML initiation. 

MUTANT CEBPΑ AS A DRIVER OF AML

CEBPA mutations in AML: Biological function and clinical implications. 
The strong myeloid phenotype observed in Cebpa knockout mice prompted the Tenen group 
to investigate AML patients for mutations in the open reading frame (ORF) of CEBPA [34, 65-
70].  Mutations in CEBPA ORF in human AML occur in approximately 7-15% of the cases [34, 
65-70]. Of these CEBPA mutant AMLs, 30% exhibit mutations on one allele, termed here
as CEBPA single mutants (CEBPAsm), with the majority occurring at the N-terminus as out-
of frame mutations. The other 70% of CEBPA mutant AMLs have both alleles affected and
are usually termed as CEBPA double mutant (CEBPAdm) AMLs (Figure 1). Usually, one allele
carries an out of frame N-terminal mutation and the other carries an in-frame C-terminal
mutation (referred to as N/C mutant) [65]. Very rare combinations of biallelic mutations
such as N/N or C/C also occur in human AMLs, and may either be derived from same C- or
N- mutations in the different alleles, or they resulted from mitotic recombination of the q
arm of chromosome 19 [71, 72].

The N-terminal out-of-frame mutations induce a stop codon after the first ATG site 
leading to translation initiation from the 3rd ATG site, generating the shorter p30 isoform in 
excess, which has been reported to act as a dominant negative of the p42 isoform [34, 65-
70].  An imbalance in the p42:p30 ratio caused by N-terminal mutations is associated with 
an increased proliferation and minimal differentiation of myeloid progenitor cells [73, 74].  
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The C-terminal in-frame mutations on the other allele cause a defect in the bZIP domain. 
However, the C-terminal mutations still generate a balanced ratio of p42:p30 isoforms. 
Depending on the position of the mutation at the bZIP domain, the C/EBPα p42 is defective 
either in (1) the DNA binding domain, which disables the DNA binding property of C/EBPα 
or (2) at the leucine zipper domain, which interferes with the formation of homo- and 
heterodimers [75-77]. This implies that CEBPAdm cases lack the wild type p42 isoform, thus 
translating only defective C/EBPα isoforms which support the onset of leukemia (see next 
section).

CEBPAdm AMLs are among the patients with a favourable prognosis [34, 65-70]. CEBPA 
mutation analysis is now routinely carried out in AML at diagnosis in many academic centres 
and applied as a prognostic marker. Single CEBPA mutation has no predictive value on 
treatment response or survival in AML. Treatment of choice and outcome for CEBPAsm AML 
is determined by mutations in other genes, such as in NPM1 and/or FLT3 [65, 78, 79].

CEBPAdm but not CEBPAsm drives the onset of AML in human and in mouse. 
All CEBPAdm AMLs carry a very similar gene expression profile that distinguishes them from 
other AML subtypes, including CEBPAsm leukemias [65, 67, 80]. In fact, a gene expression 
signature of approximately 20 genes only has been defined which predicts the presence of 
a CEBPAdm in AML. These results demonstrate that CEBPAdm AML should be considered as a 
unique AML subtype, which is biologically different from CEBPAsm leukemias. 

Mutations in the ORF deregulate the function of C/EBPα, but are they sufficient to drive 
leukemogenesis? Nerlov and colleagues addressed this question by generating mutant 
mice that carried either an N-terminal or a C-terminal mutation in Cebpa [73, 81]. Single 
mutant animals did not develop AML, suggesting that other mutations are indeed required. 
As mentioned, CEBPAsm AMLs frequently harbour mutations in genes such as NPM1, FLT3 
or ASXL1[78, 79]. Thus these mutant genes seem to collaborate with single mutations in 
CEBPA (mostly N-terminal) to drive AML.  An additional line of evidence to this statement is 
observed in families with germline N-terminal CEBPAsm. These individuals only develop AML 
if a second mutation is acquired on the other allele (usually as a C-terminal mutant), or else 
an additional mutation occurs in other AML-related genes [82]. This is in line with the mouse 
reports by Nerlov and colleagues, demonstrating that AML arises upon transplantation of 
foetal liver cells carrying combinations of knock-in CEBPAdm mutations, i.e. N/N, C/N or C/C 
mutations, with the C/N combination driving the most aggressive form of AML[73, 81].  A 
latency of 9-14 months for these mice to develop AML suggests that other cooperative 
mutations are acquired in time, which might decrease the latency of AML in these mice 
when introduced. 

Gene mutations of high interest, frequently observed in human CEBPAdm AML, are the 
ones that occur in the transcription factor GATA2. In approximately 30-40% of CEBPAdm AMLs 
mutations occur in GATA2, most frequently in the DNA binding zinc-finger domain [83, 84]. 
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In addition, two recent studies also presented for the first time mutations co-occurring in 
the CSF3R gene with CEBPAdm AML[85, 86]. The generation of models by cross breeding 
Cebpa C/N with Gata2 zinc finger mutant mice or with Csf3R mutant mice, would aid in our 
understanding of the biological role of these mutations in CEBPAdm driven human leukemia 
development. 
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Figure 3: Different mechanisms of C/EBPα deregulation in myeloid malignancies. (A) Transcriptional deregulation: 
(i) Promoter DNA methylation silences CEBPA ; (ii) Oncogenic transcription regulators (e.g. AML1-ETO or EVI1) bind 
to CEBPA-enhancer and downregulate mRNA expression; (B) Post-transcriptional deregulation : (i) The BCR-ABL 
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destabilizes CEBPA transcripts and alters granulocytic development; (C) Post-translational deregulation : (i) Increase 
in tribbles pseudokinase 2 (TRIB2) levels degrades CEBPA protein by the recruitment of COP1 ubiquitin ligase[118]; 
(ii) Internal tandem duplication in the FLT3 receptor constitutively activates the signalling molecule ERK which 
inhibits homo-dimerization of C/EBPα and hence interferes with its function by phosphorylation on serine 21.

Transcriptional control of CEBPA  
Aberrant mechanisms deregulating CEBPA function or expression occur at the transcriptional, 
post-transcriptional, translational and post-translational level in myeloid malignancies, as 
shown in Figure 3 [87-95]. Studies reported transcriptional deregulation of CEBPA either 
by DNA methylation or by the recruitment of transcriptional repressor complexes to 
regulatory elements in the CEBPA locus [96]. Post-transcriptional deregulation of CEBPA 
was shown by the BCR-ABL fusion oncoprotein and by micro-RNA-690 [93, 97]. In both 
scenarios, the CEBPA transcripts are more susceptible to instability. Protein degradation 
mediated by Tribbles2 and altered phosphorylation through increased FLT3-ITD signaling, 
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are examples of aberrant post-translational control in leukemia [98, 99]. These mechanisms 
have previously been reviewed in detail by others [2, 100], thus, in this review, we focus 
more on the emerging roles of chromatin configuration and enhancers  of CEBPA in myeloid 
development and disease. 

The topology of the CEBPA locus in transcription regulation.
Studies are revealing the role of enhancers on CEBPA transcriptional output during 
neutrophilic maturation in the bone marrow[40, 101] and how they are susceptible for 
deregulation by oncogenic mechanisms in AML. CEBPA is located in a topological associated 
domain (TAD) of 170kb on the long arm of chromosome 19, with borders demarcated by 
the architectural protein CTCF[39, 102, 103].  These borders restrict interactions to occur 
between genes and their corresponding enhancers within the TAD. Genes that occur within 
the same TAD are usually co-regulated [104, 105]. In fact, the CEBPA-TAD includes also 
another CEBP family member CEBPG, which is located 5’ of CEBPA. Both genes are located 
at close proximity in the nuclear three dimensional space and form loop interactions with 
other 14 potential enhancers located 5’and 3’ of CEBPA. The enhancers within the CEBPA TAD 
are active in different CEBPA expressing tissues in combinatorial patterns and in a cell type 
specific manner. In the bone marrow, myeloid primed progenitors and mature myeloid cells 
exhibit a combinatorial pattern of 8 active enhancers from the 14 found in the whole locus. 
Of these eight enhancers, one located at +42kb has been studied extensively [39, 40, 101, 
106, 107]. This enhancer is highly conserved between human and mice (located at +37kb 
in mice) and is active in the fetal liver and the dorsal aorta during early fetal development 
[108]. At later developmental stages and adult life, it’s main function is to prime the myeloid 
gene expression program for neutrophilic differentiation by forming chromatin complexes, 
involving hematopoietic stem cell transcription factors such as PU.1, ERG, RUNX1 and C/
EBPα itself to modulate CEBPA expression. In two separate studies, deletion of this enhancer 
in mice downregulated the expression of Cebpa, which ultimately reduced GMP formation 
and neutrophilic differentiation. The bone marrow cells lacking the +37 kb enhancer showed 
characteristics of myeloid transformation, i.e. they could indefinitely be re-plated with no 
evidence of neutrophil development in vitro, similar to C/ebpα knock out bone marrow 
cells. Other enhancers seem to be important for neutrophil development as well, but at 
later stages of maturation. Multiple enhancer knock-outs of these enhancers, either alone 
or in combination should shed light on their function in regulation of Cebpa expression and 
myeloid development. 

Hijacking of the locus by potential once-proteins
Given that the +37kb enhancer acts autonomously to regulate Cebpa expression in early 
HSPCs and later in CMPs and GMPs, it is possible that changes in enhancer function, possibly 
in combination with the other enhancers, might have potential leukemiogenic implications 
in humans. Genome wide investigations of oncogenic transcription factor binding show that 

Chapter 2

THESIS_Roberto_Avellino.indd   48 07-05-18   10:17



49

leukemia associated onco-proteins physically interact with several genomic loci to deregulate 
the expression of proto-oncogenes and tumor suppressor genes [109]. The +42kb enhancer 
(human +37 homologue) is a common target for the fusion onco-proteins known as RUNX1-
RUNX1T1 (previous called AML1-ETO)  and CBFB-MYH11 (unpublished data). Similarly, 
EVI1 also called MECOM or PRDM3, binds the +42Kb enhancer in human EVI1 transformed 
leukemias (personal observations).  Interestingly, CEBPA expression in these subtypes of 
AMLs is often downregulated, and the direct binding of these onco-proteins to the enhancer 
could explain this effect. In fact, Perkins and colleagues demonstrated that Evi1 binding 
to the murine +37Kb enhancer is associated with a reduction of Cebpa expression in Evi1 
expressing mouse myeloid leukemia lines[94]. Potentially, the onco-proteins may alter 
active chromatin states at the enhancer(s) leading to inactivation of CEBPA. Whether this 
mechanism is also the case in human AML, needs further investigations. 

The onco-protein RUNX1-RUNX1T1 has been for long associated with negative regulation 
of CEBPA expression in AML [110-113], but the mechanism underlying this interesting finding 
is poorly understood. RUNX1-RUNX1T1 is known to recruit histone deacetylases (HDACs) via 
the nervy homologues of RUNX1T1 and binds to DNA on promoters and enhancers via the 
DNA-binding domain of RUNX1. Since RUNX1-RUNX1T1 binds the +42kb enhancer at RUNX1 
motifs as demonstrated in cell lines as well as in patient samples[112], we hypothesize that 
RUNX1-RUNX1T1 recruits HDACs causing deacetylation and disturbs the enhancer-promoter 
interaction leading to the downregulation of CEBPA expression. 

Unexplained low CEBPA levels in AML: do mutations or nucleotide variants in the 
regulatory domains play a role?
Low CEBPA expression without any evidence of known underlying AML-related abnormalities 
accounts for 10-30% of AMLs. Unknown onco-proteins that may deregulate CEBPA 
expression cannot be excluded. However, other possible oncogenic mechanisms such as 
deletions or mutations causing alterations in transcription factor binding sites should be 
further investigated. The presence of single nucleotide variants occurring in transcription 
factor consensus sequences within enhancers might be another reasonable explanation 
for decreased CEBPA levels. Genome-wide association studies showed several events of 
SNVs (single nucleotide variants) occurring at enhancers of disease-causing genes [114, 
115]. Using the knowledge revealed so far about the role of SNVs or mutations in gene 
deregulation and disease susceptibility, it could be hypothesized that such alterations may 
be causative for low CEBPA expression in these CEBPAlow AML subgroups. The application of 
DNA custom captured sequencing in large AML cohorts would be a potential tool to reveal 
mutations or SNVs that may be occurring in the CEBPA locus. Such studies could aid to our 
understanding of deregulated expression of CEBPA in myeloid malignancies. These potential 
mutations or SNVs could be used as susceptibility markers for myeloid-related disorders in 
the normal population as well as in pre-leukemic conditions.
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Concluding remarks and future perspectives
This review provides a comprehensive perspective about the indispensable role of C/EBPα 
in neutrophilic differentiation. The emerging dual function of C/EBPα in AML received 
particular attention in this review; adequate CEBPA levels are required for the initiation of 
AML, whereas mutations in its ORF or deregulated expression, are key for the leukemic 
state. The role of C/EBPα in hematopoietic stem cell and progenitor cell biology is still not 
well understood. This is largely masked by the heterogeneity of bone marrow samples 
obtained from mouse models or patients, which makes it a challenge to define clearly its 
function within the HSPC population. This hurdle can be overcome by single cell RNA-seq, (in 
combination with in vitro and in vivo functional studies) a widely used application that offers 
the advantage to study the transcriptome of single HSPCs that express C/EBPα, and hence 
be able to start answering these questions. In the review we also discussed the potential 
of bypassing the C/EBPα-differentiation pathway by the administration of growth factors 
[63, 64] Otherwise, it has been proposed that C/EBPβ could take over and drive neutrophil 
development in the absence of functional C/EBPα via emergency hematopoiesis [101]. In 
cases where C/EBPα is expressed but functionally defective, such approach can open a new 
window for drug administration to induce differentiation in a C/EBPα-independent pathway. 
Another alternative is to reactivate C/EBPα expression by small molecules [116]. These 
approaches offer a therapeutic alternative[117] for a wide-range of patients with low CEBPA 
expression that might be predisposed to pre-leukemic conditions and hence, overcome any 
differentiation-related aberrations in combination with other currently available therapy.
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ABSTRACT

Neutrophilic differentiation is dependent on CCAAT enhancer binding protein alpha (C/
EBPα), a transcription factor (TF) expressed in multiple organs including the bone marrow. 
Using functional genomic technologies in combination with CRISPR/Cas9 genome editing 
and in vivo mouse modeling, we show that CEBPA is located in a 170kb topological 
associated domain that contains 14 potential enhancers. Of these, one enhancer located 
+42kb from CEBPA is active and engages with the CEBPA-promoter in myeloid cells only. 
Germ-line deletion of the homologous enhancer in mice in vivo reduces Cebpa levels 
exclusively in hematopoietic stem cells and myeloid-primed progenitor cells leading to 
severe defects in the granulocytic lineage, without affecting any other Cebpa-expressing 
organ. The enhancer-deleted progenitors cells lose their myeloid transcription program and 
are blocked in differentiation. Deletion of the enhancer also causes loss of hematopoietic 
stem cell maintenance. We conclude that a single +42kb enhancer is essential for CEBPA 
expression in myeloid cells only.
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INTRODUCTION

All cell types in the bone marrow are derived from a pool of hematopoietic stem and 
progenitor cells (HSPCs) that sustain blood cell development throughout the life of an 
organism. Prior to lineage commitment and differentiation, HSPCs undergo chromatin 
changes brought about by lineage-specific transcription factors (LTFs) to prime and activate 
lineage-specific gene expression programs1. Priming of cell lineages involves the accessibility 
and activity of cell type-specific enhancers by LTFs to regulate the expression of genes 
responsible for any given cell lineage2,3,4. 

Cell lineage priming occurs during cell fate decisions which is mainly dependent on the 
concentration or dosage of LTFs5,30,49. For instance, lymphoid-primed progenitors (LMPPs) 
have high concentrations of lymphoid related LTFs such as IKAROS, E47 and EBF that bind 
and activate lymphoid specific enhancers to induce lymphoid development53. To skew 
differentiation towards myelopoiesis, these factors become negatively regulated upon 
increased dosage of the inhibitors of differentiation (ID) TFs, in order to favour increased PU.1 
levels and promote myeloid commitment50. The leucine zipper transcription factor CCAAT 
enhancer binding protein alpha, C/EBPa, instructs myeloid differentiation via the priming 
and activation of myeloid-associated genes in HSPCs43 and competes for genomic occupancy 
with other TFs, such as PU.1 and GATA2 in the myeloid-erythroid progenitor compartment, 
to favour neutrophilic differentiation over monocytic, erythroid and megakaryocytic cell 
differentiation6,47. The important role of C/EBPa in myelopoiesis is substantiated by the 
diverse oncogenic mechanisms that target C/EBPa levels and function in various subsets 
of acute myeloid leukemia (AML)7,8,9,10,11,12. Moreover, Cebpa knock-out mouse models show 
severe myeloid defects in the bone marrow13 as well as in several other organs including the 
liver14, lung15, bone tissue16 as well as in epithelium of the gut17, implying its broad role as a 
differentiation TF in several organs. The broad role of C/EBPa as a differentiation mediator 
in multiple tissues suggests that CEBPA is under the control of tissue-specific transcriptional 
regulatory mechanisms26. Transcription regulation occurs in a hierarchical order of multi-
step processes that involve the structural organization of the genome to regulate gene 
expression programs via tissue specific enhancers18,25,51. 

In this study, we investigated how CEBPA transcription is regulated during myelopoiesis. 
We show that the CEBPA locus harbours, in total, 14 enhancers and we asked whether 
CEBPA contacts tissue specific enhancers in different CEBPA-expressing cell types. Using a 
combination of functional genomics and CRISPR/Cas9 genome editing in human cell lines 
and mouse models, we show that the +42kb enhancer acts autonomously in myeloid primed 
hematopoietic stem cells (HSCs) in the bone marrow to drive adequate CEBPA expression 
levels necessary for full neutrophilic maturation. 
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MATERIALS AND METHODS

Cell lines and Cell culture
Cell lines were cultured as follows: U937, THP-1, Raji, Jurkat in 90% RPMI and 10% Fetal Calf 
Serum (FCS); Hep3B, H292 and HepG2 80% RPMI and 20% FCS; HEK293T and HeLa in 90% 
DMEM and 10% FCS. All cell lines were supplemented with 50 U/ml penicillin and 50 μg/ml 
streptomycin.

High resolution circularized chromatin conformation capture sequencing (4C-seq)
High resolution 4C-seq was conducted as previously described55. In brief, 10x106 cells were 
crosslinked with 2% formaldehyde for 10 minutes at room temperature. Glycine (0.125M) 
was added to quench the crosslinking reaction and cells were centrifuged and suspended in 
lysis buffer to disrupt membranes and isolate chromatin. A primary four-base cutter, either 
DPNII or NLAIII, was used for digestion, followed by diluted ligations. After precipitation, 
chromatin was further subjected to a second round of digestions with a different 4 base 
cutter (either Csp6I or BFAII) and ligated to small-circularized plasmids. Primers for CEBPA 
viewpoint (Forward: TACTGCTTCTTTACTGCGATC; Reverse; CAAGCAGAAGACGGCATACGA) 
and for the 21Kkb contact domain viewpoint (Forward: GCCCAGGAGCCTGTGAGATC; Reverse: 
ACTCTGAGTGCAGAGAGGAG) were designed as previously reported55. Primers for 4C-Seq 
taking the viewpoints at the 5’ border of the 170kb topological associated domain (TAD) near 
CEBPG  (Forward: TTTTACAAGTCACAGGGATC; Reverse: ACGTCCTCTGTATTGCCTAG) and the 
3’border of the TAD, near the promoter of SLC7A10 (Forward : CCAGCACACACTGCAAGATC 
Reverse : GGAGGGAGTTCTGTGTGG). Inverse PCR was carried out to amplify sample libraries 
that were pooled and spiked with 40% PhiX viral genome sequencing library to increase 
sample diversity. Multiplexed sequencing was performed on the HiSeq2500 platform. 
4C-seq data analysis is explained in the Supplementary Methods.

ChIP-seq
ChIP experiments were performed as previously described58. Cells were crosslinked 
at room temperature for 10 minutes with 1% formaldehyde and sonicated to shear the 
chromatin. Immunoprecipitation of crosslinked chromatin was performed overnight at 40C 
with antibodies directed against the histone mark H3K27ac, the co-activator p300, and TFs 
including RUNX1, LMO2, PU.1, ERG, TAL1 and SCL, or an equal amount of isotype IgG as 
background control (http://149.171.101.136/python/BloodChIP/search.html). Descriptions 
detailing the preparation of library preparation, genome alignment and peak calling are 
included in the Supplementary Methods. 
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Flowcytometry and sorting 
Flowcytometry and sorting were carried out on the LSRII and the FACSAria IIIU (Becton 
Dickinson) respectively using the following fluorescent antibodies: CD11B- APC/GR1-FITC/
B220-PE/CD45 PerCP CY5/LIN bio cocktail streptavidin-pacific orange/cKIT-APC/SCA1-PB/
CD48-FITC/CD150-PE-CY7/CD16-32APC-CY7/CD34-PE. All antibodies were purchased from 
BD Biosciences and Biologend. Sorted fractions were collected in 500µl PBS with 5% FCS, 
spun down and re-suspended in 800µl of Trizol and used for RNA-seq.

RNA-seq
Total sample RNA was extracted using Trizol with Genelute LPA (Sigma) as a carrier and 
SMARTer Ultra Low RNA kit for Illumina Sequencing (Clontech) was used for cDNA synthesis 
according to the manufacturer’s protocol. The cDNA was sheared with the Covaris device 
and further processed according to the TruSeq RNA Sample Preparation v2 Guide (Illumina). 
The amplified sample libraries were subjected to paired-end sequencing (2 x 75 bp) and 
aligned against mm10 using TopHat v260,61 . Alignment and processing of RNA-seq data are 
documented in the Supplementary Methods.

Luciferase reporter assays
The full canonical CEBPA promoter was PCR amplified from gDNA and cloned into the pGL4.11 
(Luc2CP) (EcoRV/HindIII) (Promega) luciferase construct. The +9kb or +42kb enhancers were 
PCR amplified and cloned into pGL4.11 (luc2CP) (Sal1/BamH1) 3’ of the luciferase gene in 
the same construct where the full canonical CEBPA promoter was cloned (Supplementary 
Materials for primer sequences). HEK293T cells were transfected with Lipofectamine 2000 
(Invitrogen), U937 electroporated with Lonza KIT (Kit-C), Jurkat, K562, THP-1, HepG2 and 
H292 cells with X-tremeGENE HP DNA Transfection Reagent (Roche). Cells were harvested 
after 48 hours, and luciferase activity was measured with the Dual-Luciferase Reporter Assay 
System (Promega) on a Victor X3 plate reader (Perkin Elmer). All assays were measured in 
duplicates and performed minimally three times. 

CRISPR in human cell lines
CRISPR in human cell lines and in mouse fertilized eggs was carried out as explained in the 
Supplementary.  
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RESULTS

CEBPA interacts with multiple intergenic regions, one of which is only prominent in 
CEBPApos myeloid cells
Promoter-enhancer interactions occur within topological associated domains (TADs) and 
gene promoters confined within such a domain, might share the same set of enhancers 
for transcriptional regulation22,27,28,52. HI-C sequencing data24, a comprehensive technique to 
capture the conformation of genomes22, shows that CEBPA is located in a 170kb conserved 
TAD (labeled 2 in Fig.1a and Fig.S1a) on chromosome 19. This TAD also contains CEBPG and 
the promoter of SLC7A10, located 5’ and 3’ of CEBPA respectively (Fig.1a). To determine the 
interacting regions within the 170kb TAD (CEBPA-TAD) we applied high-resolution 4C-seq55 
taking the CEBPA-promoter as a viewpoint (Fig.1b). Eight contact regions, located 5’ and 
3’ of CEBPA were found in all cell lines investigated36, i.e. in CEBPA-expressing (CEBPApos) 
myeloid cell lines HL-60, MOLM-1, U937 and THP-1, the lymphoid CEBPAneg cell lines Jurkat 
and Raji, the lung CEBPApos cell line H292 and the cervical CEBPAneg cell line HeLa (Fig.1b and 
Fig.S1b). These contact domains varied in size between 10 and 22kb (median = 11.65kb) 
(Fig.S1d). Taking the borders of the CEBPA-TAD as viewpoints (Fig.S1c), 4C-seq revealed that 
the interactions were confined to this TAD. No significant interactions with the adjacent 
TADs 1 and 3 were found, in line with the binding of the architectural protein CTCF23,24 to the 
borders of the CEBPA-TAD (labeled 1 and 3 – Fig.1a to 1c). 

A region of 21kb prominently contacts the CEBPA promoter 
We next investigated whether any of the 8 contact regions identified by 4C-seq showed 
differential promoter interactions in CEBPApos myeloid cell lines compared to CEBPAneg cells. 
A semi-quantitative analysis of 4C-seq data was conducted, by comparing three myeloid 
CEBPApos (MOLM-1, U937 and HL-60) with three non-myeloid CEBPAneg (Jurkat, Raji and 
HeLa) cell lines. The contact region of approximately 21kb in size located 3’ of CEBPA (Fig.
S1d), showed a more significant interaction (FDR<0.05), in the CEBPApos cell lines compared 
to CEBPAneg cells (Fig.1d). In contrast, no major interaction differences were observed for 
the other CEBPA promoter interacting regions. A reciprocal 4C-Seq experiment using the 
21kb contact region as a viewpoint, confirmed that the interaction with the CEBPA gene 
occurred at a higher frequency in CEBPApos myeloid cell lines (FDR<0.05) (Fig.S1e). These 
findings show that a distant region of 21kb interacts with CEBPA prominently in CEBPApos 
myeloid cells, suggesting a myeloid-specific chromatin conformation at this region.

Two potential enhancers with myeloid preference located within the 21kb-contact 
region
To identify regions of active chromatin in peripheral blood neutrophils and monocytes we 
conducted H3K27ac ChIP-seq and compared the determined H3K27ac profiles to those 
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obtained from public available data derived from other human primary CEBPApos (n=12) 
and CEBPAneg (n=4) tissues (http://www.roadmapepigenomics.org/). The H3K27ac ChIP-
seq profiles revealed 14 potential enhancers within the CEBPA-TAD, located upstream and 
downstream of CEBPA (Fig.2; Green profile). Each tissue investigated harbored a distinct 
combination of H3K27ac marked regions, suggesting tissue specificity and differential 
regulation of CEBPA expression(Fig.2; Blue profiles). Tissues which do not express CEBPA 
were all devoid of H3K27ac marked sites within the CEBPA-TAD (Fig.2; Red profiles), except 
for the CEBPG promoter19,20. Of these 14 potential enhancers, ten located 5’ (-9kb, -4kb, 
-25kb, -47kb and -64kb) and 3’ (+9kb, +29kb, +34kb, +42kb, +50kb) of CEBPA are found 
within the eight contact regions identified by 4C-seq (Fig.S2). The +34kb and the +42kb 
regions were exclusively H3K27ac marked in neutrophils and monocytes. These two 
regions are located within the 21kb large contact region that showed increased interaction 
in myeloid cells (Fig.1d). The +9kb region is H3K27ac marked in all the CEBPA-expressing 
tissues investigated, suggesting a tissue-broad role in CEBPA regulation (Fig.2a). These 
findings show that from a total of 14 potential enhancers located within the CEBPA-TAD, 
the +34kb and +42kb regions appear to be myeloid-specific, suggesting the presence of an 
enhancer-rich chromatin site important for CEBPA transcriptional regulation.

The +42kb enhancer is occupied by hematopoietic specific transcription factors in HSPCs
CEBPA is expressed at low levels in CD34+ progenitor cells and increases upon neutrophilic 
maturation (Fig.3a). The low CEBPA expression levels in CD34+ progenitor cells (Fig.3a) 
correlate with the number of potential enhancers found by H3K27ac ChIP-seq (ENCODE)29 
i.e., only the +42kb and the +9kb potential enhancers are active at this stage of hematopoiesis 
(Fig.3b). Motif analysis revealed that the +42kb enhancer contains DNA binding motifs (a 
CTCF-interacting zinc finger transcription factor40) and multiple HSPC-related (TFs) (Fig.S3a).  
In contrast, the +9kb enhancer contains DNA binding motifs corresponding to a universal set 
of TFs (Fig.S3a). Furthermore, the HSPC-related LTFs and other TFs including LYL11, RUNX1, 
GATA2, FLI1, ERG and LMO221,30 bind the +42kb region in CD34+ cells (Fig.3c). Recruitment 
of p300 to enhancers is highly suggestive of enhancer activity31. ChIP-Seq in the CEBPApos 
MOLM-1 cell line demonstrated strong binding of the histone acetyltransferase p300 to the 
+42kb enhancer (Fig.3d). This binding was also demonstrated by ChIP-qPCR in the CEBPApos 
myeloid cells HL-60, U937 and THP-1 (Fig.3e). No binding was found in the lymphoid cell lines 
Jurkat and Raji or the CEBPApos non-hematopoietic cell lines H292 (lung) and HeLa (cervical). 
Together, our data show that the +42kb enhancer is a critical region highly occupied by a 
HSPC-related TF complex that potentially initiates CEBPA expression in CD34+ progenitor 
cells. 
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Figure 1: The CEBPA promoter contacts multiple intra-TAD genomic sites: Stronger   interaction with a 21kb 
genomic region in CEBPA expressing myeloid cells.(a) HI-C heatmap matrix (25kb resolution) in the K562 cell 
line on chromosome 19 reveals a 170kb CEBPA TAD (2), which is flanked by TADs 1 and 3. The CEBPA TAD also 
contains CEBPG and part of SLC7A10. (b) Normalized 4C-seq profiles of myeloid CEBPApos HL-60 (Blue), lymphoid 
CEBPAneg Jurkat (Red) and cervical CEBPAneg HeLa (green) cell lines. The viewpoint (red triangle) located at the 
CEBPA promoter shows multiple interacting sites confined to the CEBPA-TAD (borders marked in grey). (c) CTCF 
ChIP-seq (ENCODE) in the myeloid HL-60, lymphoid Jurkat and cervical HeLa cell lines shows enrichment at the 
CEBPA TAD borders (grey) which overlap with the HI-C contact-matrix borders separating the CEBPA-containing 
TAD2 from TAD1 and TAD3. (d) Quantitative analysis of 4C-seq data to distinguish interacting regions occurring 
at higher contact frequencies in CEBPApos myeloid cells (orange; n=3) compared to CEBPAneg cells (blue; n=3). The 
CEBPA viewpoint is marked with a dotted line. A specific region indicated in gray of around 21kb located 3’ of CEBPA 
and with more than 250 reads per million shows a statistically significant higher contact frequency (FDR <0.05) in 
CEBPApos as compared to CEBPAneg cell lines.
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Figure 2: The CEBPA TAD exhibits a diverse combination of active enhancers in different CEBPApos tissues.  ChIP-
seq for H3K27ac conducted in terminally differentiated neutrophils and monocytes (in-house) was compared to 
publicly available ChIP-seq H3K27ac (www.roadmapepigenomics.org/). Superimposed H3K27ac (top; green) ChIP-
seq profiles from 14 different CEBPApos tissue types shows 14 potential enhancers situated within the CEBPA TAD at 
5’ (-9, -14, -25, -47, -56, -64 kb) and at 3’ (+9, +15, +21, +29, +34, +42, +50, +55 kb). Each individual CEBPApos tissue 
type (middle; blue) shows a different combinatorial set of active enhancers. CEBPAneg tissue types (bottom; red) do 
not exhibit H3K27ac at the locus, except at CEBPG. An intergenic 8kb hotspot (red) located within the 21kb contact 
domain (grey), contains two potential enhancers (+34kb and +42kb) that are H3K27ac enriched in neutrophils and 
monocytes only. 
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Figure 3: The +42kb region is specifically H3K27ac marked in CD34+ hematopoietic stem cells. (a) CEBPA mRNA 
expression determined by qPCR in FACS sorted populations of normal CD34+ bone marrow cells, metamyelocytes 
and neutrophils (n=3). (b) H3K27ac ChIP-seq in CD34+ cells, obtained from GCSF-mobilized peripheral blood cells, 
reveals enrichment at the +9kb and +42kb enhancers. Motifs that correspond to specific TF binding sites are 
depicted underneath each enhancer (For details, see Fig.S3a). (c) ChIP-seq for the indicated transcription factors 
carried out in CD34+ cells, shows specific binding at the +42kb enhancer. (d) ChIP-seq for p300 in MOLM-1 CEBPApos 

cell line MOLM-1, reveals the strongest interaction at +42kb. (e) ChIP-qPCR shows p300 enrichment within the 
+42kb region in the CEBPA–expressing cell lines MOLM-1, U937, HL-60, THP-1, but not in the CEBPAneg cell lines
Jurkat, Raji, H292 and HeLa. Enrichment was calculated as fold change relative to IgG control. 
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Figure 4: The +42kb enhancer is a myeloid-specific CEBPA transcriptional activator. (a,b) The +42kb and +9kb 
enhancer were cloned 3’ of a luciferase reporter gene under the control of the full canonical CEBPA promoter. 
Results are presented as fold change of the +42kb enhancer in combination with the CEBPA promoter 
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(d and e) Wild type clones (n=6) and homozygous clones (n=9) were selected and qPCR for CEBPA mRNA expression 
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N.S = not significant.
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Figure 5: +37kb deleted mice (+42Mkb) show low Cebpa levels and develop neutropenia. (a) ChIP-seq H3K27ac in 
murine total bone marrow (ENCODE) shows multiple regions of open chromatin. A region located at +37kb in mice 
is highly homologous (Fig S5a) to the human +42kb enhancer and is H3K27ac marked. (b) Table showing Mendelian 
ratios. (c) PCR genotyping using primers flanking the gRNAs generate an amplicon of 1.65kb on the intact/wild type 
allele and an amplicon of 550bp on the deleted/rearranged allele. (d and e) Flow-cytometric analysis to distinguish 
neutrophils in peripheral blood or bone marrow of wild type (blue), heterozygous (green) and homozygous (red) 
mice using the myeloid differentiation markers Mac1 and GR1. (f) Neutrophil absolute counts in peripheral blood 
and bone marrows of wild type and homozygous mice (g) Cebpa mRNA expression from total bone marrow 
obtained from wild type (n=6) or homozygous +42Mkb knockout mice (n=6) is presented as fold change. (g) Cebpa 
mRNA expression from liver, lung and spleen does not show significant changes. *** = P<0.0001;** = P<0.001; N.S. 
= not significant.
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The +42kb enhancer regulates CEBPA in myeloid cells
We next determined the activity of the +42kb enhancer using luciferase reporter assays. 
The +42kb enhancer was cloned into a luciferase reporter construct driven by the CEBPA 
promoter and its activity was investigated in different cell lines (Fig.4a). A 2.5-fold increase 
of luciferase activity was observed in the myeloid cell lines U937 and THP-1, compared to the 
luciferase-reporter driven by the CEBPA promoter only. The +42kb enhancer was not active 
in non-myeloid cell lines Jurkat, HepG2, H292 or HEK293T (Fig.4a). In contrast, the activity 
of the +9kb enhancer was more general across different cell types (Fig.4b). Using CRISPR/
Cas9 genome editing technology, we next generated gRNAs flanking the TF and the p300 
binding region of the +42kb enhancer (approximately 800bps) and co-electroporated them 
with Cas9 into the myeloid cell line THP-1. Targeted THP-1 cells generated heterozygous 
clones (Fig.4c), which were further tested for CEBPA expression by qPCR. Deletion of the 
+42kb enhancer resulted in 2-4 fold reduced CEBPA transcript levels as compared to wild
type controls (Fig.4d). No changes in CEBPG mRNA expression levels were observed (Fig.4e).
SLC7A10, located 5’ of the 170kb CEBPA TAD is not expressed in THP-1 cells (data not shown).
In contrast to the effects observed in THP-1 cells, deletion of the +42kb enhancer in the
Hep3B hepatocyte cell line, revealed no changes in CEBPA or CEBPG expression compared to 
wild type clones (Fig.S4). These results suggest a tissue-specific role of the +42kb enhancer
in the regulation of CEBPA levels in myeloid cells.

In vivo deletion of the murine +42kb homologous enhancer causes neutropenia
We hypothesized that deletion of the +42kb enhancer in vivo would cause neutropenia due 
to a selective decrease of Cebpa levels in myeloid progenitors, leaving other Cebpa expressing 
organs unaffected. A region located +37kb from the mouse Cebpa TSS  shows approximately 
90% homology with the human +42kb region and is H3K27ac enriched in mouse bone marrow 
(Fig.5a, S5a, ENCODE)29. Applying CRISPR/Cas9 nickase technology, we generated three 
+37kb (here designated +42Mkb) knock-out mouse lines (Fig.S5b). Genotyping, confirmed
germ-line deletion of the enhancer in the three lines and revealed Mendelian distributions
of wild type (+42Mkb+/+), heterozygous- (+42Mkb+/-) and homozygous-deleted (+42Mkb-/-) mice
(Fig.5b and c). In contrast to full Cebpa knockout mice13, homozygous +42Mkb-/- mice were
viable after birth and histopathological analysis of 4 to 5 week old mice did not reveal any
major defects in lung, liver or spleen tissue (data not shown). Flow-cytometric analysis of
blood and bone marrow showed a strong reduction of Mac1+Gr1+ mature neutrophils in
+42Mkb-/- mice compared to age-matched +42Mkb+/- and +42Mkb+/+ control animals (Fig.5d, e
and f). May-Grünwald staining of bone marrow cells showed the reduction of neutrophils in
+42Mkb-/- mice compared to control mice (Fig.S5d). It is important to note that, in line with
the fact that the neutrophil count was severely reduced, approximately 30% of the +42Mkb-

/- mice died from bacterial infections 3 to 4 weeks after birth, as illustrated by the presence
of bacteria in blood vessels of multiple tissues by histopathological analysis (Fig.S5f). Other
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blood indices, including total white blood cell count and hemoglobin concentration revealed 
no differences between wild type and mutant mice (Fig.S5c and d). A slight increase in 
lymphocyte and monocyte counts was noticed, probably due to reduced space that is 
normally occupied by neutrophils in the bone marrow (data not shown). Cebpa transcript 
levels were 60-80% reduced in total bone marrow of +42Mkb-/- mice compared to wild type 
control mice (Fig.5f), but no changes in expression were observed in Cebpg expression 
levels, although Cebpa knockout shows increase in Cebpg levels41. No decrease of Cebpa 
transcript levels was observed in lung, liver and spleen of +42Mkb-/- mice (Fig.5g).

The +42Mkb enhancer controls Cebpa expression in GMPs and CMPs
We investigated whether the reduced neutrophil numbers are preceded by a decrease 
in Cebpa levels in bone marrow progenitor cells. Flow-cytometric analysis showed a 
significant reduction in absolute numbers of granulocytic/monocytic progenitors (GMP) and 
a significant increase in common myeloid progenitor (CMP) numbers in the bone marrow 
of +42Mkb-/- mice compared to +42Mkb+/+ controls (Fig.6a and b). We performed RNA-seq 
on sorted progenitor fractions and observed that Cebpa levels were reduced more than 
100-fold in CMPs and GMPs in +42Mkb-/- (n=3) compared to +42Mkb+/+ (n=3) mice (Fig.6c). 
Cebpa levels were low to absent in MEP sorted populations from +42Mkb+/+ and +42Mkb-

/- mice (data not shown). CMPs and GMPs derived from +42Mkb+/+ and +42Mkb-/- mice also 
showed major differences in expression levels of myeloid-associated genes (Fig.6c; Fig.S6a 
and b). One of these target genes is Csf3r, encoding the colony stimulating factor receptor 
Csf3r, required for GMP survival and neutrophilic differentiation. Csf3r transcript levels were 
decreased 20-fold in total marrow, as well as in CMP and GMP FACS sorted fractions from 
+42Mkb-/- mice (Fig.6d). Consequently, bone marrow cells from +42Mkb-/- mice failed to form 
colonies in response to GCSF (Fig.6e). These data show that the enhancer is required at early 
stages of myeloid development and acts as a main activator of the CSF3-driven myeloid 
differentiation program.

Loss of hematopoietic stem cells and expansion of multi-potent progenitors in 
+42Mkb-/- mice
We next investigated the effects of +42Mkb enhancer deletion on the distribution of HSCs 
and multipotent progenitor cells (MPPs) (Fig.7b). Absolute numbers of the linnegSca-1posc-
KITpos (LSK) cells were significantly higher in +42Mkb-/- mice than in control mice (Fig.7a 
and b). RNA-seq of the LSK fractions revealed that Cebpa levels were several folds lower 
in +42Mkb-/- (n=3) than in +42Mkb+/+ LSK cells (n=3) (Fig.7c). Within the LSK population 
MPPs can be discriminated from short-term and long-term HSCs using SLAM (signaling 
lymphocyte activating molecules) code CD48/CD150 markers. The linnegCD48negCD150pos 
LT-HSCs and linnegCD48negCD150neg ST-HSCs were reduced by 10-20 fold in +42Mkb-/- mice 
(Fig.7a and b). These changes are in line with data from Porse and colleagues43 using Mx-cre 
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Cebpa conditional knockout model, indicating that decreased CEBP/a levels disturbs the 
integrity of the HSC pool. Conversely, a significant increase of the linnegCD48posCD150neg and 
linnegCD48posCD150pos MPP population was observed in +42Mkb-/- mice. These data show that 
the enhancer activity at the HSPC stage is essential to maintain constant Cebpa levels in 
myeloid-primed progenitors during the course of myelopoiesis. 

Sustained proliferation of +42Mkb-/- bone marrow progenitor cells 
To investigate the effects of +42Mkb enhancer deletion on the proliferative behavior of 
bone marrow progenitors, colony cultures were carried out using a combination of IL-3, 
IL-6, SCF and GM-CSF. No differences in primary colony numbers were observed between 
+42Mkb-/-, +42Mkb+/- or +42Mkb+/+ mice. +42Mkb-/- bone marrow cells could be serially replated, 
whereas +42Mkb+/- and +42MKb+/+ cells underwent exhaustion (Fig.7d). Flow-cytometric 
analysis revealed that the majority of the replated cells from +42Mkb-/- mice expressed 
linnegCD48posCD150neg MPP and linnegCD16/32posCD34pos GMP markers, with minimal 
neutrophilic differentiation (Fig.7d). 
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Figure 6: Reduction in GMPs, increase in CMPs and loss of GCSF response in +42Mkb enhancer deleted bone 
marrow. (a) Lineage negative cKITposSca-1neg (LK) cells were derived from gated c-KITpos cells. The myeloid progenitor 
cell population including CMP, GMP and MEP was characterized using CD34 and CD16/32 markers gated from LK 
cells. (b) Absolute numbers for lineage negative cells, LK, CMP and GMP cell populations were calculated from bone 
marrow white cell count per femur. (c) Cebpa expression measured by RNA-seq expressed as FPKM values derived 
for wild type and homozygous mice in CMP (2wt vs. 3hom) and GMP (2wt vs. 2hom) sorted fractions. (d) Csf3r 
expression in total bone marrow by qPCRs, presented as fold change between wild type (n=3) and homozygous 
(n=3) mice. RNA-seq analysis of Csf3r in FACS-sorted CMP and GMP cell populations with values expressed as 
FPKM. (e) Numbers of CSF3 stimulated colonies per 10,000 cells plated obtained from wild type bone marrow or 
from +42Mkb homozygous deleted mice. Colony numbers represent the average of three independent experiments. 
Representative microphotographs of colonies show differences in sizes and numbers between wild type and 
homozygous mice.

Chapter 3

THESIS_Roberto_Avellino.indd   74 07-05-18   10:17



75

 

CD
48

CD150

MPP71.4%
MPP

3.73%
LT-HSCST-HSC

c-
KI

T

Sca-1

CD
48

CD150

c-
KI

T

Sca-1

Wild Type

7.5%

Heterozygous

c-
KI

T

Sca-1

68.4%
MPP

LT-HSCST-HSC
3.5%

CD
48

CD150

MPP
75.8%

ST-HSC
0.08% 0.224%

LT-HSC

CD
48

CD150

17.4%
LSKc-

KI
T

Sca-1

Homozygous

0
WT Het Hom

Lin-ve Sca-1+ C-Kit+

(LSK)
Lin-ve CD48- CD150+ 

(LT-HSCs)

Lin-ve CD48- CD150- 

(ST-HSCs)
Lin-ve CD48+ CD150+ 

(MPPs)

Cebpa (LSK)

WT Het Hom

WT Het Hom

WT Het Hom

(b)

LSK
7.82%

LSK
6.85%

(c)

3.94%

(a)

0
1
2
3
4

FP
KM

CD
16

/3
2

WT Hom

WT
WT
Heterozygous
Homozygous

0
10

70
80

20
30
40
50
60

7 days

Clonogenic assay (IL-6, IL-3, SCF, GM-CSF)

GMP

MPP
95.6%

CD34

CMP

MEP

LK LSK

89%

22.2%77.3%

Morphology M

G
B

Wild Type Homozygous

(d)

Co
lo

ni
es

 (p
er

 1
00

0 
pl

at
ed

 ce
lls

)

80000

60000

40000

20000

0

80000

60000

40000

20000

300

100

200

0

300

100

200

0Ab
so

lu
te

 n
um

be
rs

 
(p

er
 fe

m
ur

)
Ab

so
lu

te
 n

um
be

rs
 

(p
er

 fe
m

ur
)

10 replating
20 replating

30 replating
40 replating

Figure 7: Loss of hematopoietic stem cells and expansion of multi-potent progenitors in +42Mkb-/- mice. (a) SLAM 
CD48+CD150+ markers were used to characterize cell distribution within the MPP, LT-HSC and ST-HSC cell populations 
gated from linnegSca-1posc-kitpos (LSK) cell populations. (b) Absolute cell numbers for LSK, MPP, LT-HSC and ST-HSC 
were calculated from bone marrow white cell count per femur. (c) Cebpa expression by RNA-seq (FPKM values of 
wild type vs. homozygous mice). (d) Total bone marrow cells from wild type, heterozygous and homozygous mice 
were cultured in semi-solid medium supplemented with IL-3, IL-6, SCF and GM-CSF. Colonies were counted and 
replated every seven days. FACS plots showing that majority of cells grown under these conditions are mainly LK/
GMP cells, and to a less extent MPP/LSK cells. Morphological examination with May-Grünwald-Giemsa after 7 days, 
distinguishes normal granulocytic and macrophage differentiation in wild type cells as compared to homozygous 
cells that show blasts as the major cell population.
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DISCUSSION

Applying functional genomics and genome editing to different models including human 
hematopoietic cell lines, human bone marrow progenitors and in vivo mouse models, we 
show that a single myeloid-specific enhancer is (1) autonomously responsible for CEBPA 
expression in myeloid primed HSCs, (2) initiates the myeloid gene expression program and 
(3) indispensable for neutrophil development.

Deletion of the +42kb enhancer in our model causes loss of Cebpa expression in the 
myeloid lineage and failure to induce complete neutrophilic differentiation. This suggests 
that the +42kb enhancer initiates the myeloid program by acting as a highly occupied target 
region for HSC-related TFs (Fig.3) and thereby activates Cebpa34. Upon myeloid commitment, 
the intergenic site between CEBPA and SLC7A10 contains multiple enhancers which become 
active during myeloid differentiation (Fig.2, Fig.S5d), raising the question if these enhancers 
possess functional redundancy, thus, potentially acting as shadow enhancers32,33. We 
postulate that (1) the +42kb enhancer works autonomously at the HSPC stage to induce 
necessary Cebpa levels, (2) followed by activation of the myeloid transcription program 
inducing myeloid commitment, (3) upon myeloid commitment the other enhancers become 
active in order to serve as a transcription activation platform35 and elevate Cebpa levels to 
a necessary level for terminal neutrophilic differentiation (Fig.S8). We predict that upon 
deletion of the +42kb enhancer the other enhancers within the locus will not become 
active (absence of H3K27ac) resulting in failure to prime myeloid differentiation.

The +42kb enhancer deletion causes a reduction in LT-HSCs and ST--HSCs, therefore 
recapitulating the phenotype of the Mx-Cre/Cebpa conditional knockout mice42. In this 
study, as well as in other studies43,44, it has been demonstrated that Cebpa levels are critical 
to maintain HSC numbers and survival under a quiescent state. Given that only a small 
population of HSCs expresses Cebpa45, it remains unclear what causes the severe loss of 
HSCs upon deletion of either Cebpa or the +42Mkb enhancer. The LSK fraction (including 
the MPPs, LT-HSCs and ST-HSCs) shows significant reduction of Cebpa levels in the +42Mkb-
/- mice, suggesting a critical role for the enhancer in Cebpa regulation in LSKs. However, 
given that the MPP fraction (CD48+CD150-) constitutes the majority of the LSK population, 
Cebpa downregulation in the LSK fraction (Fig.7b) mainly reflects Cebpa level changes in the 
MPP population. Given that C/EBPa negatively regulates cell cycle genes to keep a constant 
balance of proliferation and differentiation46, it is possible that the block in differentiation 
leads to a constant demand for myeloid progenitor production, causing HSC exhaustion. 
In our model, the expansion of the progenitor population argues in favor of an increased 
progenitor state as a negative feedback mechanism to compensate for the differentiation 
block.
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CEBPA is located in an enhancer-rich TAD and its promoter contacts eight intergenic 
sites. One question to be addressed is which potential architectural proteins or protein 
complexes that mediate the +42kb enhancer (or any of the other interacting enhancers) to 
CEBPA promoter interaction. The TAD is confined to a genomic region of 230kb with 
borders demarcated by CTCF (Fig.1C), an architectural protein involved in looping 
interactions within and across TADs23,37,38. CTCF also binds to the promoter of CEBPA, 
possibly, by forming multiple extrusions of the 5’ and 3’ interacting intergenic sites of 
CEBPA39. The intergenic sites contacting CEBPA are highly enriched for H3K27ac thereby 
marking potential enhancers, but they lack CTCF or cohesion binding. From our motif 
analysis data, (Fig.S3) we found that the +42kb enhancer harbors a ZNF143 DNA binding 
motif (CAGCCTTCATGCATTG). ZNF143 is a zinc finger TF that associates with CTCF to 
allocate enhancers close to promoters and facilitate transcription regulation40. It is 
therefore possible that ZNF143 has implications in initiating this interaction by binding 
the +42kb enhancer to associate with CTCF on the CEBPA promoter, thus causing the 
+42kb enhancer- CEBPA promoter interaction (Fig.S7). To test this hypothesis, functional 
experiments including genome editing of the ZNF143 binding site followed by 4C-seq are 
required to reveal the association between ZNF143 binding and CEBPA regulation in terms 
of a ZNF143-dependent CEBPA promoter to enhancer interaction.

Diverse oncogenic mechanisms that affect C/EBPa expression or function were 
reported in various subsets of AML7,8,9,10,11,12. It is possible that mutations in the +42kb 
enhancer could relate to transforming events. The expansion of the MPP population in the 
enhancer deleted mice suggests a pre-leukemic potential, which can only be confirmed by 
conducting serial transplantation experiments. The sustained replating of the +42Mkb 
MPPs (Fig.7d) are in concordance with a pre-leukemic state of the cells. It is also possible 
that the enhancer is involved in epigenetic deregulation of the CEBPA gene in certain 
AMLs. Patients with a chromosomal translocation t(8;21) present with low CEBPA 
expression levels. The t(8;21) generates the AML1-ETO (i.e., the RUNX1-RUNX1T1 fusion 
transcript) fusion protein that binds to sites that are usually bound by RUNX1. The +42kb 
enhancer carries multiple RUNX1 binding sites and ChIP-seq experiments in CD34+ cells 
revealed that RUNX1 binds to the enhancer (Fig.3). Knock-down of RUNX1-RUNX1T1 in 
Kasumi-1 cell line demonstrated a significant up-regulation of CEBPA mRNA and protein 
levels48 but the mechanism by which this happens has not been resolved. Our data 
suggest that the +42kb enhancer is major interaction site for AML1-ETO, which may 
deregulate CEBPA expression. Interestingly, the transforming EVI1 protein (unpublished 
observation) also binds the +42kb
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SUPPLEMENTARY MATERIALS AND METHODS

4C-seq data analysis
4C-seq data analysis was performed as previously described28. In brief, the 4C-seq read 
primer sequences with their barcodes were used to demultiplex the reads and to trim the 
reads from the 5’-end to the first restriction enzyme recognition site. The sequences were 
mapped, while ignoring quality scores of the read bases and not allowing for a mismatch, 
to a database of digested genome fragment-ends using the mouse reference genome build 
mm9. All 4C-seq samples passed the quality control threshold values28.

We normalized the data taking library size and 4C-seq fragment-end types into 
account28,58. The 4C-seq contact frequency profiles were generated with the median value of 
the CEPBA+ and CEPBA- 4C-seq data. The 4C-seq data was smoothed by applying a running 
trimmed (10%) mean approach using 21 fragment-ends in a single window. 

We further determined regions of differentially contact frequencies. 4C-seq data are 
biased for each fragment-end differently and therefore do not follow a specific distribution. 
Hence, we used a non-parametric approach to test for statistical significance between two 
phenotypes. First, we ranked all normalized data for each fragment-end independently, and 
set ties to the minimal value. Subsequently, we binned, along the locus, the ranks of 21 
fragment-ends and calculated the m x n rank frequency matrix (m = 2; i.e. the number of 
different phenotypes; n = number of samples). We merged the columns of the frequency 
matrix based on the order of each phenotype and the number of samples, e.g. if the first 
ranked phenotype, based on the enumeration of the rank frequencies multiplied by the 
rank number, has been sampled three times, the first three columns of the m x n matrix are 
merged by adding up the row values, and the other columns are merged similarly resulting 
in a 2 x 2 matrix. Moreover, a Χ2-test was applied on this 2 x 2 contact frequency matrix. 
The p-values were corrected for multiple hypothesis testing using the Benjamini-Hochberg 
method59 and areas with significant contact differences are indicated in gray in Figures 1d, 
S1e. The R statistical package version 3.2.2 was used for the statistical calculations and for 
generating the 4C-seq contact plots60.

ChIP-seq alignment and peak calling
The immunoprecipitated DNA was processed according to the Illumina TruSeq ChIP Sample 
Preparation Protocol (Illumina) and single-end sequenced (1 × 50 bp) on the HiSeq 2500 
platform. Reads were aligned to human genome build 19 (hg19). PCR bias amplicons were 
removed by SAMtools (http://samtools.sourceforge.net/). Subsequently, a peak-calling 
algorithm was applied by comparing target enrichment to its related input control using 
MACS 1.4.2, according to standard procedures

An Autonomous CEBPA-enhancer for myeloid-lineage priming and neutrophilic differentiation

3

THESIS_Roberto_Avellino.indd   83 07-05-18   10:17



84

CRISPR of the +42kb enhancer in human cell lines
Two guide RNAs (gRNAs) flanking the +42Kb enhancer were designed using the crispr.mit.
edu tool. Guide RNAs were purchased as gBlocks (IDT) and cloned into a pCR2.1 TOPO blunt 
backbone using EcoRV blunt restriction sites (Invitrogen). 

Sorting of bulk GFP positive THP-1 cells was carried 48 hours post nucleofection (Amaxa, 
Lonza, using Kit-V) of 1x106 cells with Cas9-GFP (Addgene: 44719) together with gRNAs 
(1ug per construct). Bulk GFP positive THP-1 cells were grown as single cell derived colonies 
in methocult semi-solid medium. Hep3B cells (2x106) were transfected using Fugene 6 
(Promega) with Cas9-GFP together with gRNAs (1ug per construct). Single cells were sorted 
in 96 well plates. Per cell line, 100 clones were expanded in 48 and 24 well plates. DNA 
was harvested for genotyping using primers flanking the gRNAs. Homozygous and wild type 
cell clones were harvested for total RNA isolation by Trizol (Invitrogen) extraction followed 
by DNase digestion. The SuperScript II Reverse Transcriptase kit (Invitrogen) was used for 
cDNA-synthesis. Quantitative RT-PCR was carried out on the 7500 Fast Real-time PCR System 
(Applied Biosystems). Relative levels of gene expression were calculated using the 2-ΔΔCt 
method. Statistical significance was calculated by a T-test (two-tailed) using GraphPad Prism 
software.

CRISPR gRNA sequence:
5’: CCGGGAGCAGTCAGGATATC
3’: AGGATCCACATAGACCCGAT
CRISPR PCR genotyping :
Forward : CAGGGTATTCCCTGTGGGGAAGCTTGGAGC
Reverse : GAAGGATCTCACAGGCTCCTGGGCTCAGGC
QPCR primers : 
CEBPA
Forward : GGATAACCTTGTGCCTTG
Reverse : CTCCCCTCCTTCTCTCAT
CEBPG
Forward : GGCTAGAGGAGCAGGTACAT
Reverse : GCCTGGGTATGGATAACACTA

Generation of CRISPR mouse models using CRISPR/Cas9 nickase 
The nickase system was used to reduce potential off-target effects by CRISPR/Cas961. Two 
pairs of gRNAs were designed on either side of the mouse +42Mkb enhancer. Guide RNAs 
were purchased as gBlocks (IDT) and cloned into a pCR2.1 TOPO blunt backbone using EcoRV  
blunt restriction sites (Invitrogen). In vitro RNA transcription (ABI: MEGAscript T7 Transcrip-
tion kit) from each of the four gRNAs was generated using T7 dependent RNA production 
from gBlocks (IDT) whereas Cas9n mRNA was purchased commercially (Sigma-Aldrich). 

Chapter 3

THESIS_Roberto_Avellino.indd   84 07-05-18   10:17



85

In brief, microinjections of 15ng/ul of gRNA and 30ng/ul of Cas9n mRNA were carried out 
in one cell stage zygotes derived from C57/BL6, which were then transferred into foster mice. 
Three mouse lines were generated by CRISPR/Cas9 via random on-target site recombination, 
producing three different deleted sites occurring within the enhancer (Fig.S5b). Using a 
PCR genotyping approach, each line produced different amplicon sizes. The biggest cut 
was of 1.1kb; a middle cut of approximately 1.05kb; smallest cut of 0.65kb. Heterozygous 
littermates were crossbred to obtain F1 generation mice and beyond for analysis in order 
to avoid mosaic deletion. All mouse lines were sacrificed at two time points: 4-5 weeks 
and 9-10 weeks after birth. RNAs from total bone marrow of wild type and homozygous 
mice were harvested by Trizol extraction, followed by DNase digestion. The SuperScript II 
Reverse Transcriptase kit (Invitrogen) was used for cDNA-synthesis. Quantitative real-time 
RT-PCR for Cebpa, Cebpg and Csf3r was carried out on the 7500 Fast Real-time PCR System 
(Applied Biosystems). Relative levels of gene expression were calculated using the 2-ΔΔCt 
method.  Statistical significance was calculated by a T-test (two-tailed) using GraphPad Prism 
software.

CRISPR gRNA sequence (nickase system):
5’ : TGAAGCCTACACTACTTTGT and AGAGGTAGGAACTCCATTCC
3’ : AGAGCCTCGCTCAAGCCCAT and TTGAGACATCTGGTAACCTT
CRISPR PCR genotyping :
Forward : GAGGTGACAGTCTGTGCAGCTGGGACACAAC
Reverse : GGATACTGATGGCTGATCCTCCCATTCCTC
Primers for QPCRs :
Csf3r
Forward : CCTGGATGATAGAACCTAACGGG
Reverse : CTCTCCAGCGAAGGTGTAGACA
Cebpa
Forward : GCAAAGCCAAGAAGTCGGTGGA
Reverse :  CCTTCTGTTGCGTCTCCACGTT
Cebpg 
Forward : GCTTACAGCAGGTTCCTCAGCT
Reverse : GGCGGTATTCGTCACTATTCCG

RNA-seq analysis
In brief, all reads were aligned against genes annotated in the RefSeq Transcriptome database 
and remaining non-aligned reads were aligned against the full genome. Gene expression 
levels were quantified by the fragments per kilobase of exon per million fragments mapped 
(FPKM) statistic as calculated by Cufflinks59. Hierarchical clustering analysis was performed on 
the FPKM values using complete linkage as clustering methodology and Euclidean distance 
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as distance measure using the Gplots package in the R environment. Read counts were 
determined with HTSeq-count62 and subsequently used for differential expression analysis 
in DESeq263, with default parameters, in the R environment. Multiple testing correction was 
achieved by performing the Benjamini-Hochberg procedure59 on the calculated p-values to 
control the False Discovery Rate (FDR).

Histopathological examination
Tissues (bone marrow, brain, heart, intestine, kidney, liver, lung, pancreas, spleen, thymus) 
were fixed in 10% neutral-buffered formalin and embedded in paraffin. Tissue sections 
of 3 µm thick were stained routinely with hematoxylin and eosin and examined by light 
microscopy. Bacterial infection was detected In all tissues except brain and intestine, based 
on the presence of bacteria in the lumina of blood vessels. In many places, these bacteria 
formed long chains. Postmortem invasion of tissues by bacteria was ruled out by the lack 
of autolysis of the tissues, together with the specific localization of bacteria in blood vessel 
lumina.

Luciferase reporter constructs: Primer sequences.
Full CEBPA canonical promoter primer sequences:
Forward: ATCACTGATATCGCCGACTCCATGGGGGAGTTAGAGTTCT; 
Reverse: ATCACTAAGCTTGCCAGGCCTAAGGCCACTGTCGGTGAAG.

+42Kb enhancer primer sequences : 
Forward : ATTATGTCGACGGATCCAGGCCCTATCCCAGGGTATT
Reverse:  ATTATGTCGACGAGGCTGAGGAGCAAATCAC

+9Kb enhancer primer sequences : 
Forward : attaatGTCGACTCTAGAAGCACGTGGGAATCATTAGC
Reverse: attaatGTCGACCAAGCCCTCTTGGATCTGAA

Accession numbers
ChIP-Seq data derived from cell lines are available in the ArrayExpress Database  
(www.ebi.ac.uk/arrayexpress) under accession number E-MTAB-2225.
Blood-cell ChIP-seq data have been deposited in the NCBI GEO database  
(accession codes GSE40668).
ChIP-Seq of transcription factors on CD34+ HSPC fractions are available at 
http://149.171.101.136/python/BloodChIP/
The 4C-Seq results and RNA-Seq data of sorted mouse progenitors are deposited at the 
European Nucleotide Archive (ENA, http://www.ebi.ac.uk/ena/), which is hosted by the EBI. 
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Fig.S1 : CEBPA is confined within a 170kb TAD. (a) HI-C heatmap matrix of chromosome 19 in K562 at 1MB 
resolution (top) and at 25Kb resolution (bottom), showing the CEBPA-TAD (2) and its adjacent TADs (1 and 3). 
(b) Normalized 4C-seq in CEBPApos myeloid cell lines (MOLM-11, THP-1, U937), CEBPAneg lymphoid Raji cell line 
and CEBPApos lung H292 cell line show interactions held in TAD2. (c) Normalized 4C-seq in myeloid HL-60 (Blue), 
lymphoid Jurkat (red) and HeLa (green) using CEBPG (middle) and SLC7A10 (bottom) as a viewpoint. (d) Normalized 
4C-seq profile which represents the 8 common contact domains (median = 11.65Kb) observed in all cell lines 
investigated. (e) Quantitative analysis of 4C-seq data to distinguish interacting regions occurring at higher contact 
frequencies in CEBPApos+ cells (orange, n=3) compared to CEBPAneg- cells (blue, n=3). The viewpoint is marked as a 
dotted line which contacts CEBPA (gray bar) with a significant higher contact frequency of more than 250 reads per 
million (FDR <0.05) in CEBPApos+ vs. CEBPAneg- cell lines.
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Fig.S5. Generation of the +42Kb enhancer deletion mouse model by CRISPR/Cas9. (a) Human +42Kb enhancer 
DNA sequence is 90% conserved with mouse +37Kb H3K27ac enhancer DNA sequence. (b) Genotyping by PCR 
showing three different lines with three different random NHEJ cuts generated by CRISPR/Cas9. Each cut represents 
a different amplicon of either 550bps, 600bps or 1Kb. (c) White blood cell count (x109/L) and Hb levels (grams) for 
wild type, heterozygous and homozygous mice using ABC blood counter. Total body, liver and spleen weight in 
grams. (d) May-Grünwald-Giemsa staining of bone marrow cytospins of wild type and homozygous mice. (e) 
H3K27ac ChIP-seq in LT-HSCs, ST-HSCs, MPPs, CMPs, GMPs, Neutrophils, Monocytes, CD4+ T cells, CD19 B cells64. (f) 
Presence of bacteria (arrows) in blood vessels of femoral bone marrow, glomeruli of the kidney, pancreas, and lung 
of a +42Mkb-/-  mouse that died at 3 to 4 weeks after birth. In the lung, the presence of bacteria in capillaries of the 
pulmonary alveoli is associated with abundant proteinaceous fluid (oedema fluid) and fibrin strands in the alveolar 
lumina, suggesting damage to the alveolar wall and leakage of fluid from blood vessels into the air spaces. 
Hematoxylin and eosin stain. Objective magnification: 100X (bone marrow, kidney), 40X (pancreas, lung).
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ABSTRACT

The non-coding genome hosts the major part of regulatory enhancer elements required for 
transcriptional control. Chromosomal abnormalities and point mutations in the non-coding 
genome are becoming more evident as disease-causing mutations in cancer, including 
acute myeloid leukemia (AML). Many mutations in AML generate oncogenic mechanisms 
and block neutrophilic differentiation by interfering with the neutrophil differentiation 
transcription factor C/EBPa. Low CEBPA levels are commonly observed in acute myeloid 
leukemia (AML), thus we hypothesized that point mutations or cryptic chromosomal 
abnormalities at previously identified CEBPA-enhancers decrease are responsible for low 
transcriptional output. A specific AML subgroup with relative low CEBPA expression levels, 
CEBPALOW(n=84), was selected from a cohort of 640 AML patients based on ranking of 
CEBPA levels from microarray data. Point mutations were not found in the whole locus in all 
patients investigated, whereas gross deletions occurring across multiple chromosomes were 
observed in one patient. We observe that deletion breakpoints do not happen randomly 
but occur at CTCF sites; located either at borders or inside topological associated domains 
(TADs). Deletions involved loss of genes important for differentiation, DNA replication, 
recombination and genes encoding architectural proteins involved in genome maintenance. 
Genes outside the deletion breakpoints were also deregulated due to disturbed insulated 
neighbor-hoods between TADs. Our results indicate that the CEBPA-enhancers are not 
targeted by DNA mutations except in a patient harboring a high rate of genomic instability 
accompanied by large deletions with breakpoints occurring at CTCF binding site located at 
topological associated domains, which are transcriptional domains with high susceptibility 
for DNA breakage. 
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INTRODUCTION

The folding and packaging of chromatin within the nuclear space is fundamental for gene 
regulation[1]. At the highest organizational level of chromatin, chromosomes are 
segregated into discreet chromosome territories (CT) in interphase nuclei[2]. 
Chromosomes are composed of condensed chromatin sub-divided into megabase-scale 
domains known as topological associated domains (TADs)[3, 4]. These TADs contain genes 
that engage with corresponding cis-regulatory modules (or enhancers) at relatively close 
proximity, forming looping structures to facilitate gene regulation [5]. Architectural 
proteins, such as CTCF and cohesin, form complexes with DNA and they form borders at 
TADs to secure and restrain their regulatory content from any interactions with genes or 
enhancers outside the neighborhood [6-9]. Such organization allows for a few genes to be 
co-regulated within the same insulated neighborhood, thus providing an efficient system 
to transcribe genes simultaneously and decreasing the risk of global gene deregulation by 
a one-hit mutation [9, 10]. Point mutations or structural variants in non-coding regions of 
the genome interfere with the organization of the nucleus and disturbs gene 
regulation[11]. Structural variants, such as chromosomal inversions, duplications and 
translocations, cause TAD reconfiguration that disturbs insulated neighborhoods and 
relocate ectopic enhancers close to or away from genes leading to aberrant gene 
expression programs [12, 13]. Such mechanisms have been revealed in different types of 
congenital disorders as well as in wide variety of tumors [12, 14-16]. Point mutations in 
transcription factor DNA binding motifs can either lead to low affinity transcription factor 
(TF) binding or they can generate a binding consensus site for a TF[13, 17-19].

The neutrophilic transcription factor C/EBPa is a common target for deregulation in 
AML. Many oncogenic mechanisms modulate CEBPA mRNA levels or 
compromise its protein function[20]. CEBPA is located in a 240kb TAD together 
with CEBPG [21]. Cebpa expression levels in the bone marrow are mainly 
upregulated by the autonomous +37kb enhancer (+42kb human homolog 
enhancer) in early myeloid-biased progenitors. Upon myeloid commitment 
and differentiation, additional enhancers become active in the CEBPA locus resulting 
in a further increase of CEBPA expression[21]. We aimed to investigate the 
CEBPA locus for possible DNA mutations that disrupt enhancer function in AML 
patients.  No mutations were found in the CEBPA locus except for one patient that 
exhibits bi-allelic deletion of CEBPA. This patient also exhibits several TAD deletions 
and duplications. In conclusion, this is the first patient to be reported that 
exhibit CEBPA null mutations in AML and our findings indicate that TAD 
borders are fragile sites that increase susceptibility for chromosomal abnormalities, 
possibly by involving a common factor which might be responsible for TAD maintenance 
during DNA replication and transcription. 

CEBPA-enhancer targeting mutations are infrequent in acute myeloid leukemia
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MATERIALS AND METHODS

Patient samples and Sanger sequencing 
AML patient samples were collected from three AML cohorts (n=641) that were part 
of the HOVON study (Netherlands, Austria and Germany) and were processed as 
previously described. Genomic DNA was harvested from all patients in this cohort. Two 
sets of PCR primers covering the +42kb enhancer were designed for sequencing (F1: 
CATCAGATCTGGAGGACGCC/
R1: GGTATTCCCTGTGGGGAAGC; F2:CTCTGAGTGCAGAGAGGAGCC/ 
R2: CATCAGATCTGGAGGACGCC). Amplicons from each patient were sequenced on ABI 3500 
sanger sequencing machine and sequences were analysed manually for mutations.

Custom Capture DNA-seq.
A custom probe library that covers 2.3 mega-basepairs on chromosome 19 covering the 
CEBPA locus was designed from Nimblegen. In brief, 100ngs of genomic DNA was subjected to 
enzymatic shearing followed by an end-repair and A-tailing reaction. Illumina adaptors were 
ligated and a double size selection for the optimal size of DNA to be sequenced was carried 
out. The right DNA size was confirmed using a bioanalyzer (Agilent) and DNA was hybridized 
for 16-20 hours onto probe captures. The captured DNA was cleaned and amplified again 
before run on Illumina 2500 sequencing platform. See Supplementary methods for analysis.
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RESULTS

CEBPA	expression-based	ranking	identi ies	an	AML	subgroup	without	or	 low	CEBPA 
level
We hypothesized that low CEBPA expression levels in AML are driven by enhancer 
deregulation. To study our hypothesis, we studied CEBPA mRNA expression using a 
microarray dataset available for a cohort of 641 AML patients. Based on different 
logarithmic cutoff values, we stratified the patients based on CEBPA expression levels as 
follows: CEBPALOW group (cut-off: -1 to -4); CEBPALOW-MED (cutoff: 0 to -1); CEBPAMED-HIGH 

(cutoff: 0 to 1) and CEBPAHIGH (cutoff: 1 to 3) (Fig.1a). The CEBPALOW subgroup comprises 
84 patients, of which 47%, had a known recurrent AML-associated abnormality including 
translocation t(8,21) (n=20),  CEBPAmethylated (n= 11)[22], AMLs with chromosome 3q26 
abnormalities with EVI1 overexpression (n=4) and a subset of AML patients with  
FLT3-ITD (n= 2) (Fig.1b). The remaining CEBPALOW cases (53%) did not belong to any 
AML subtype of known recurrent abnormalities. We investigated by Sanger nucleotide 
sequencing for potential mutations in the +42kb enhancer, which was previously 
characterized as an indispensable CEBPA-enhancer for neutrophilic differentiation. 
Within the conserved +42kb CEBPA-enhancer (~500bps) no mutations were found in any of 
the 642 AML cases studied,which is in line with a previous analysis that was conducted on a 
small number of AML patients (n=110)[23-25]. These findings led us to investigate for 
mutations occuring in other potential regulatory elements within the CEBPA locus[21].

CEBPA-enhancer targeting mutations are infrequent in acute myeloid leukemia
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Figure 1. CEBPA expression-based ranking analysis in AML recognizes 4 AML subgroups. (a) Ranking of CEBPA 
expression based on mRNA microarray analysis classifies a cohort of 642 AML patients into four groups: low group 
(cut-off: -1 to -4); low-to-medium (cutoff: 0 to -1); medium-to-high (cutoff: 0 to 1) and high (cutoff: 1 to 3). The 
x-axis represents the patient rank and the y-axis represents the CEBPA levels expressed as log values. (b) Pie-chart 
showing the different genetically defined AML subgroups found in the CEBPA low AML subgroup.
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DNA-sequencing	and	SNP	array	CGH	reveal	a	bi-allelic	deletion	of	the	CEBPA	locus	
in	one	AML	patient

In addition to the +42kb enhancer, the CEBPA locus harbors at least 14 potential 
enhancer regions, which are all contained in a 240kb topological associated domain 
(TAD)[21]. The CEBPA TAD also includes the CEBPG gene, the SLC7A10 promoter and 
partially PEPD. By applying custom capture DNA-sequencing (DNA-seq), we extended 
our strategy to screen 2.3 mega base-pairs on 19q11, including the CEBPA TAD (Fig.2a). 
Surprisingly, after filtering single nucleotide polymorphisms (SNPs), no mutations were 
detected except in one patient (#7120) that harbored no DNA-seq reads at the CEBPA 
TAD, suggesting a CEBPA-TAD null mutation (Fig.2b). This finding is in line with the 
CEBPA expression-based ranking results showing that this patient ranks the lowest from 
all the patients in the cohort (Supp. Fig.1a). Moreover, this patient sample was 
previously identified as a CEBPA silenced leukemia, without evidence of hyper-
methylation of the CEBPA gene[22]. Clinical details of this patient claim a secondary AML 
following colorectal cancer, which potentially is a therapy-induced AML. It is clear that, 
when compared to other DNA-sequenced patients, the sequencing-read depth of the whole 
captured 2.3mb region is low at both centromeric and telomeric regions of the CEBPA 
locus (Fig.1b and Supp. Fig.1b). This suggests that one allele exhibits a larger deletion 
than the 2.3mb captured by DNA-sequencing. To map for precise deletion breakpoints on 
chromosome 19, we applied SNP array comparative genomic hybridization on genomic 
DNA of patient 7120 and validated the presence of a 242kb deletion at one allele, but 
also found a gross deletion of 28 megabases on the other chromosome 19q (Supp. 
Fig.2 ). Together these data suggest that mutations in the non-coding genome of the 
CEBPA locus are extremely rare, with one patient exhibiting a homozygous deletion of 
the CEBPA locus i.e. one allele exhibiting loss of heterozygosity of chromosome 19q and a 
242kb deletion on the other allele that targets the CEBPA TAD. 
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Figure 2. DNA-seq reveals bi-allelic deletion of CEBPA in patient 7120. (a) Capture beads for DNA-sequencing cover 
a region of 2.3mega basepairs on chromosome 19q13.12, including the CEBPA locus (green bar), telomeric region 
(blue bar) and centromeric region (yellow bar). (b). DNA-seq reads visualized on the integrated genome browser 
showing deletion of the entire CEBPA locus (green bar) with deletion breakpoints occurring close to CTCF regions 
from CTCF ChIP-seq tracks (ENCODE) in K562 myeloid cell line. 
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CEBPA CEBPG PEPD

SLC7A10

CTCF - K562
(ENCODE)

LRP3

Ch19 : 33,675,000 - 34,355,000
HI-C (K562 : 5kb Res)

CHST8 KCTD15

>11

>0

Deletion : chr19:33,714,465-33,957,387

TAD TAD

Figure 3. Homozygous deletion breakpoints at the CEBPA locus occur at the TAD borders. HI-C contact frequency 
from K562 cell line (at 5kb resolution) representing a genomic region on the long arm of chromosome 19 (Ch19 : 
33,675,000 - 34,355,000) overlaid with CTCF Chip-seq tracks from K562 cell lines. Deleted region (chr19:33,714,465-
33,957,387) is shown in red dotted box. 

Deletion breakpoints occur close to or at CTCF-bound regions at borders or inside 
topological associated domains
To investigate whether breakpoints are associated with the chromosome architecture[26], 
we used a combinatorial approach by mapping the deletion breakpoints at the CEBPA locus 
from DNA-seq and SNP array, and overlaid them with contact frequencies derived from 
HI-C experiments conducted in K562 cells. In addition, CTCF ChIP-seq was used to define  
borders of TADs or sub-TADs.  Interestingly, the deletion breakpoints occurred close to 
or at CTCF sites at the borders of the CEBPA TAD (Fig.3). In addition to the chromosome 
19q deletions, more deletions were revealed on other chromosomes in the patient (7120) 
applying the SNP-array. We used the same combinatorial approach to investigate breakpoints 
on other chromosomes and found that they also occur close to or at CTCF bound TAD borders 
or sub-TADs (Fig.4). Deletion sizes varied from one TAD to several adjacent ones (See Supp. 
Table 4). In total, 5322 genes were found located inside deleted TADs. The majority of these 
deleted genes were heterozygous i.e. loss of heterozygosity (LOH). Since the number of 
deleted genes is large, it was difficult to assign the deleted genes to biological pathways. 
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Figure 4. Heterozygous deletion on chromosome 3q showing a gross deletion of 1.2 megabases involving several 
TADs and sub-TADs. HI-C contact frequency from K562 cell line (at 5kb resolution) representing a genomic region 
on the long arm of chromosome 3 (chr3: 128100000-129275000) overlaid with CTCF Chip-seq tracks from K562 cell 
lines. Deleted region (chr3:128,228,266-129,250,968) is shown in red dotted box. 

Many deleted genes encode proteins that belong to specific functions such as genome 
architecture (CTCF, SMC1), chromatin modifiers (Ep300, EZH2, HDACs, MED21, KMT2 
and 5, KDM3,7,8), DNA damage response (APOBEC3, ERCC1 and 2), myeloid membrane 
markers (CSF1R, CD14, CD33), 100 long non-coding RNAs including HOTAIR and HOTTIP and 
transcription factors (CEBPA, CEBPE, FOSB, FOX, HOX, IRF8, CBFB) . Genome duplications 
were also observed, although at a minimal frequency when compared to deletions (Supp. 
Table 4 and Supp. Fig.4). In conclusion, the CTCF binding regions are potential fragile 
sites for chromosomal breakage leading to a high genomic instability profile and loss of 
heterozygosity to thousands of genes.
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DISCUSSION

We here report that mutations in regulatory elements near CEBPA are highly infrequent. A 
subgroup of AML with low CEBPA expression levels was selected based on the hypothesis 
that low CEBPA expression levels in AML are caused by DNA mutations, such as insertions 
and deletions of enhancer DNA sequences. We predicted that mutations in enhancers might 
disturb specific TF binding motifs and hence abrogate or reduce the affinity of transcription 
factors and their co-activators to bind the enhancer and regulate CEBPA transcription. 
Examples of mechanisms for this sort of transcriptional deregulation have been reported 
previously. For example, mutations in an intergenic region on chromosome 9p13 attenuate 
the expression of the tumor suppressor gene PAX5 in patients with pre-B-cell precursor 
acute lymphoblastic leukemia[27]. On the other hand, 7bp insertions of DNA sequences 
generate a MYB TF binding site in enhancers of proto-oncogenes such as LMO2 and TAL1, 
and elevate their expression levels in T-ALL [18]. Similar mechanisms were also reported in 
other non-hematopoietic tumors, indicating a more common mechanism used in different 
tumor types [28]. Although these reports show gene deregulation by enhancer-targeted 
mutations, the CEBPA-enhancers are most probably targeted by different oncogenic 
mechanisms in leukemia.

Breakpoints generated by chromosomal abnormalities such as translocations, deletions 
or inversions are commonly found in the coding part of genes in AML [29-31]. However, 
breakpoints occur less frequent in the non-coding part of the genome [12]. By combining 
two technologies, DNA-seq and SNP-array, we confirmed that the deletion at the CEBPA 
locus involves both alleles; one allele affected as part of a large deletion on the long arm 
of chromosome 19 (MB) and the other allele exhibited a smaller deletion occurring close 
to boundaries of the CEBPA TAD. In fact, we found many more deletions, most of 
which occupied whole TADs or sub-TADs. The breakpoints were located close to or at a 
CTCF binding site. There is supporting evidence that CTCF binding occurs next to genomic 
fragile sites, which are highly susceptible for chromosomal breakage and instability[26]. 
The genomic instability observed in this patient is possibly caused as a secondary event 
post-therapy that was administered for the primary solid tumor. Increase in therapy-related 
DNA damage might have mutated genes that safeguard the genome such as TP53, as well as 
genes involved cell cycle checkpoints, DNA replication, recombination and repair. However, 
this can only be confirmed by applying whole genome exome-sequencing and search for 
potential mutated candidates responsible for genomic instability [32-34]. 

We conclude that mutations in the non-coding genome of the CEBPA locus are infrequent 
in AML. This suggests that other unknown oncogenic mechanisms in the CEBPALOW subgroup 
interfere with transcriptional control of the gene. Oncoproteins such as AML1-ETO and 
EVI1 have been reported to recruit protein complexes that reverse active chromatin and 
repress genes [35]. Thus, it is highly possible that low CEBPA expression levels in 47% of 
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the CEBPALOW subgroup are directly linked to the oncoprotein generated by the underlying 
abnormality including AML1-ETO in t(8;21), EVI1 in 3q abnormalities, mutations in coding 
sequence of DNMT3, and FLT3-ITD (internal tandem duplication) (Fig.1).The mechanism by 
which these oncoproteins deregulate CEBPA expression is yet to be determined. The other 
53% cases with no associated abnormality and with no detected mutations in the CEBPA-
TAD, could be potentially targeted by other causative mechanisms that require further 
investigations. It is of major importance to understand how oncoproteins such as AML1-ETO 
and EVI1 hijack differentiation-related enhancers and deregulate genes involved in myeloid 
differentiation, in order to provide more insights on epigenetic mechanisms and improve 
therapeutic strategies.In the next chapter of this thesis, we investigated thoroughly the 
potential mechanism of enhancer deregulation in AML by studying the epigenetic influence 
of AML1-ETO on CEBPA deregulation.
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Supplementary Figure 1. (a) Ranking of CEBPA expression showing placement of patient 7120 in the CEBPALOW 
subgroup. (b) DNA-seq reads from patient 2279 show no deletions. 
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Supplementary Figure 2. Snapshot of SNP array showing the CEBPA TAD on chromosome 19. The presented region 
showed a biallelic chromosomal loss at the CEBPA TAD shown in red, flanked by monoallelic chromosomal loss, 
telomeric and and centromeric to the CEBPA TAD shown in light orange.
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Supplementary Figure 3. Heteroygous deletion on chromosome 11q showing a deletion of 150kb. HI-C contact 
frequency from K562 cell line (at 5kb resolution) representing a genomic region on the long arm of chromosome 
11 (65,050,979-65,424,656) overlaid with CTCF Chip-seq tracks from K562 cell lines. The deleted region 
(chr11:65,194,300-65,344,301) is shown in red dotted box that covers a region of 150kb encompassing two sub-
TADs.
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a region of 148kb occurring within one sub-TAD.
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SUPPLEMENTARY METHODS FOR CUSTOM CAPTURE DNA-SEQ 

Alignment
Quality control of the sequencing run was assessed by using ShortRead. The alignment to 
the reference genome was accomplished using the Burrows-Wheeler Alignment Tool (BWA-
MEM) (1). The Human Genome version 19 (hg19) (Santa Cruz (UCSC), CA) was used as the 
reference genome. SAMtools was used to sort and index the compressed binary format 
(BAM) files outputted by BWA. 

Variant Calling
Variant calling was performed on the outputted BAM files using the algorithms: GATK 
MuTect(2), GATK MuTect2(2), GATK UnifiedGenotyper (3), SAMtools/BCFtools (4), Varscan2 
(5), GATK IndelGenotyperV2 (6) and Pindel (7). All tools from GATK were run with the 
BadCigar filter. Each variant file was subsequently annotated by Annovar and merged to 
create one variant file per sample.

Variant Analysis 
Variants were filtered according to the regions used in the capture. All variants found to be 
non-synonymous or flagged as known germline variants by either the snp137 or snp138 
database (Santa Cruz (UCSC), CA) except if also flagged as somatic by the COSMIC70 
database, were removed. Any variants with lower than 4 supporting high quality reads, 
an allele frequency lower than 15% high quality reads or found within more than 50% of 
samples were removed. The remaining variants were separated into the two groups based 
upon low or high CEBPA expression. Any variant found to be significantly more present in 
either group (p-value < 0.05) were manually analyzed using the integrative genome viewer 
(IGV). 
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ROH Analysis
Runs of homozygosity (ROH) were detected using the hidden Markov model from the H3M2 
tool for whole exome with default parameters (8).
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ABSTRACT

Oncogene activation by recurrent genetic mutations rewires the chromatin states of 
genes responsible for bone marrow cell differentiation and proliferation. A diverse range 
of oncogenes target CEBPA transcriptional levels or its function in acute myeloid leukemia 
(AML). The mechanisms by which such oncogenes halt interfere with CEBPA are largely 
unknown. CEBPA expression levels are low in AML patients with the AML1-ETO (AE) fusion 
oncoprotein. We here show that AE directly influences CEBPA expression by binding to its 
canonical +42kb enhancer, reverses its active chromatin state at the enhancer and disrupts 
the three-dimensional topology in human AML patients and in the AE cell line model, 
Kasumi-1. Gene deregulation by AE involves the recruitment of histone de-acetyl transferases 
(HDACs), which might potentially explain the selective loss of H3K9ac and H3K27ac as well 
as the loss of CEBPA gene to enhancer interaction. Revealing further how AE interferes with 
histone acetyl-transferase enzymes responsible for H3K9ac and H3k27ac, may help to find 
a therapeutic platform to reactivate CEBPA expression in myeloid malignancies. Our study 
show how a fusion oncoprotein influences the dynamics of the myeloid differentiation 
program by hijacking a specific enhancer, reverses its active state, interferes with its 
chromatin conformation and reduces gene expression levels of the myeloid transcription 
factor, CEBPA.

THESIS_Roberto_Avellino.indd   120 07-05-18   10:17



121

INTRODUCTION

Acute myeloid leukemia (AML) is a heterogeneous malignancy with an aberrant differen-
tiation program of myeloid cells in the bone marrow. It is becoming more evident that 
bone marrow progenitors require myeloid priming and commitment to develop the right 
molecular environment to initiate AML. Several studies have recently shown that substantial 
levels of CEBPA, the major driver of neutrophilic differentiation, are required to generate 
myeloid progenitors and initiate AML[1, 2]. In fact, up to our knowledge, there are no studies 
that report any CEBPA null mutations in AML patients[3-5] (except the patient we report in 
chapter 4 of this thesis), which supports the idea that an adequate CEBPA dosage is required 
for some degree of myeloid differentiation to occur and hence trigger the onset of AML.

Several mutations that occur in AML are linked to CEBPA deregulation; either by 
interfering with its expression levels and/or with its function. Such mutations frequently 
occur in transcription factors and other nuclear proteins that act upstream of CEBPA. One 
of the major upstream transcription factors of CEBPA in normal hematopoiesis is RUNX1[6, 
7]. The normal function of RUNX1 is critical in the generation of hematopoietic stem cells 
(HSCs) from the hemogenic endothelium during development [8, 9]. RUNX1 has two 
important domains: the transcriptional activating domain at the C-terminal and the DNA 
binding domain at the N-terminal site of the protein. Investigations in conditional Runx1 
knockout mouse models show that that RUNX1 protein in the bone marrow acts as an 
upstream transcriptional co-activator of Cebpa and, upon deletion of Runx1, Cebpa levels 
are diminished[6]. Moreover, we showed that in human CD34+ hematopoietic stem and 
progenitor cells (HSPCs) RUNX1 physically binds to its consensus motifs located at the +42kb 
enhancer and at the gene promoter of CEBPA[7], highly suggesting an important role of 
RUNX1-CEBPA regulatory axis in myelopoiesis.

In AML, RUNX1 is a common target for genomic mutations[10, 11]; either deregulated 
by recurrent chromosomal translocations generating partner fusion genes such as AML1-
ETO (AE) also known as RUNX1-RUNX1T1, also known as) and AML1-MDS1-EVI1 (AME) or 
RUNX1-MDS1-EVI1 or by point mutations occurring in the RUNX1 coding sequence of both 
the DNA binding and the trans-activating domain[12-14]. Fusion genes involving RUNX1 
exhibit breakpoints within the gene that result in the loss of its transcriptional activating 
domain but retain the DNA binding domain. The RUNX1 fusion partner genes are known 
to bind DNA via the RUNX1 DNA-binding domain, whereas their fusion partners ETO or 
EVI1 act as strong transcriptional repressors[15]. These fusion oncoproteins bind to RUNX1 
recognition motifs embedded within DNA sequences of gene promoters and regulatory 
elements and exert their function by deregulating target genes to perturb the myeloid 
differentiation program. In both AE and AME driven AMLs, the CEBPA expression levels are 
relatively lower when compared to other AMLs[15], suggesting that CEBPA is one of the 
main differentiation factors to be deregulated in these two subtypes of AML. 

AML1-ETO reverses the active chromatin state and conformation of a myeloid specific enhancer to inhibit CEBPA 
expression
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Throughout the last decades, it has been studied thoroughly how mutations activate 
oncoproteins in tumorigenesis. Many of these mutations have been modelled in cell lines 
and in vivo models to understand and recapitulate the phenotype observed in cancer patient 
samples. However, how these oncoproteins modulate the chromatin landscape to interfere 
with the expression of their genes is still poorly understood. In this study, we sought to 
understand the mechanism of how AE negatively[16] influence CEBPA expression in AML, 
by studying the chromatin state and topology of the CEBPA locus using cell line models and 
AE patient samples. 

MATERIALS AND METHODS

Patient Samples and gene expression profiling
AML patient samples were collected from three AML cohorts (n=528) that were part of 
the HOVON study (Netherlands, Austria and Germany) and were processed as previously 
described. Gene expression analysis for these patients using Affymetrix Human Genome 
133 Plus2.0 GeneChips (Affymetrix, Santa Clara, CA, USA) has been published previously.  
Labelling, hybridization, scanning and data normalization were performed as previously 
described[17, 18].

Cell lines, culturing and transductions
The cell lines used in this study were grown in the following conditions: Tet-off inducible 
U937 cell lines (Tet off inducible empty vector and AML1-ETO) in RPMI 1640 supplemented 
with TET free serum and 1ug/mL of tetracycline (Clontech); Kasumi-1 (parental cell line) in 
RPMI1640 supplemented with 20% fecal calf serum; Tet on inducible shRNA system Kasumi-1 
cell lines (scrambled shRNA and AE shRNA) in RPMI 1640 supplemented with Tet free serum 
(Clontech), induced with 1ug/mL of tetracycline. Tet-off Inducible cell lines were washed 
three times with PBS prior to starting with inducible experiments. U937 Tet-off cell lines 
and Kasumi-1 Tet-on cell lines were a kind gift from D.Zhang and C.Bonifer, respectively. The 
HL-60 cell line was grown in RPMI 1640 supplemented with 10% FCS. Viral particles were 
produced by chemical transfection (Fugene 6, Promega) in human embryonic kidney 293T 
cells with equal concentrations of gag-pol-env construct and different isoforms of AML1-ETO 
(AE long form, AE short form 9a and AE DNA binding mutant R135G) cloned in pMSCV-IRES-
GFP construct. Supernatants were harvested after 48hours and were immediately used for 
transduction experiments. Retro-viral transduction of these constructs in HL-60 was carried 
out using Retronectin (Clontech). GFP positive cells were sorted on FACS ARIA 72 hours 
after transduction and cells were harvested for further investigations. The AML1-ETO (AE 
long form, AE short form 9a and AE DNA binding mutant R135G) constructs were a kind gift  
from D.Zhang.
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mRNA and protein expression
RNA was harvested from cell lines (2x106) in Trizol at different time points as previously 
described and converted to cDNA using reverse transcriptase kit (Invitrogen). QPCRs for 
CEBPA and AML1-ETO gene expression were quantified using SYBR green FAST and were 
further run on ABI7500. Nuclear lysates were harvested from the Tet-off inducible U937 
lines at different time points; 0 hours, 24hours, 48 hours, 72 hours. Nuclear lysates were 
prepared using the following buffers: Protein concentration was measured by the pierce 
BCA Protein assay kit (Thermofisher) and then run on an illuminometer ( ). For every sample, 
40ug of protein lysates were first boiled for denaturation at 950C then loaded on a 4-10% 
gel. Gels were blotted on () for an hour, and the blots were further blocked for one hour with 
milk. Primary antibody for CEBPA, AML1-ETO and GAPDH were incubated at 40C overnight, 
then washed the next morning with PBS/Tween for three times. Secondary antibody (donkey 
or goat anti-human) was then incubated for 1 hour at room temperature. 
Chromatin immunoprecipitation (ChIP)
ChIP experiments were performed as previously described. Cells were crosslinked at room 
temperature for 10 minutes with 1% formaldehyde, sonicated for chromatin shearing 
and nuclear lysates were prepared. Immunoprecipitation of crosslinked chromatin was 
performed overnight at 40C with antibodies directed against the histone mark H3K27ac, 
H3K9ac, AML1-ETO. An input sample for normalization was included for all cell lines and 
patient sample investigated. 

ChIP-seq analysis
The immunoprecipitated DNA was processed according to the Illumina TruSeq ChIP 
Sample Preparation Protocol (Illumina) and single-end sequenced (1 × 50 bp) on the HiSeq 
2500 platform. The quality of the sequence reads was first assessed with FASTQC [1] and 
summarized with MultiqQC [2]; all quality checks were considered acceptable. The reads 
were then uniquely aligned to the human genome build 19 (hg19) using bowtie v1.1.1 with 
the following settings: --mm --tryhard -m 1 --best --chunkmbs 1024 --strata. Peak calling was 
performed using MACS2 v.2.1.1 [4] with default parameters, taking the immunoprecipitated 
(IP) sample as the foreground data and its matched genomic DNA (input) as the control 
background. Further quality checks were conducted with PicardTools and a custom-made 
script that implements metrics developed by the ENCODE Consortium. 

Next, the peaks of individual samples were combined into a consensus set of non-
overlapping peaks, merging those that overlap by at least one base. Peaks that could not be 
identified in a minimum of two primary AML samples or overlapped with ENCODE blacklist 
regions [7] were excluded. Subsequently, the number of reads contained in the peaks of 
the consensus set was counted individually for every sample and corrected for background 
signal by subtracting the reads in the matching input sample. The background-subtracted 
counts were then normalized by trimmed mean of M values (TMM) [8]. The merging of 
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peaks, counting and normalization were conducted using the DiffBind package [9] in R. 
DiffBind was also employed to conduct unsupervised clustering on the TMM-normalized 
counts and supervised comparisons between the AE and the AMLCEBPA+ groups. Namely, fold-
change and FDR values were obtained for such comparisons by feeding raw background-
subtracted counts into DESeq; peaks with a FDR < 0.05 were considered to be significant. 

Finally, bigwig tracks were generated for visualization with deepTools by counting the 
number of background-subtracted reads in bins of 20 bp with a 200-bp smoothing window, 
and normalized by reads per kilobase per million (RPKM).

High resolution circularized chromatin conformation capture sequencing (4C-seq)
High resolution 4C-seq was conducted as previously described. In brief, 10x106 cells were 
crosslinked with 2% formaldehyde for 10 minutes at room temperature. Glycine (0.125M) 
was added to quench the crosslinking reaction and cells were centrifuged and suspended 
in lysis buffer to disrupt membranes and isolate chromatin. A primary four-base cutter, 
either DPNII, was used for digestion, followed by diluted ligations. After precipitation, 
chromatin was further subjected to a second round of digestions with a different 4 base 
cutter NLAIII and ligated to small-circularized plasmids. Primers for CEBPA viewpoint 
(Forward: ACTGCTTCTTTACTGCGATC; Reverse: AAATCAAAAAGCACCAAGAG) and for 
the +42Kkb contact domain viewpoint (Forward: GCCCAGGAGCCTGTGAGATC; Reverse: 
ACTCTGAGTGCAGAGAGGAG) were designed as previously reported(7). Inverse PCR was 
carried out to amplify sample libraries that were pooled and spiked with 40% PhiX viral genome 
sequencing library to increase sample diversity. Multiplexed sequencing was performed on 
the HiSeq2500 platform. 4C-seq data analysis is explained in the Supplementary Methods.

4C-seq analysis
4C-seq data analysis was performed as previously described. In brief, the 4C-seq read 
primer sequences with their barcodes were used to demultiplex the reads and to trim the 
reads from the 5’-end to the first restriction enzyme recognition site. The sequences were 
mapped, while ignoring quality scores of the read bases and not allowing for a mismatch, 
to a database of digested genome fragment-ends using the human reference genome build 
hg19. All 4C-seq samples passed the quality control threshold values.

We normalized the data taking library size and 4C-seq fragment-end types into account. 
The 4C-seq contact frequency profiles were generated with the median value of the 4C-seq 
data. The 4C-seq data was smoothed by applying a running trimmed (10%) mean approach 
using 21 fragment-ends in a single window.

 We further determined regions of differentially contact frequencies. 4C-seq data are 
biased for each fragment-end differently and therefore do not follow a specific distribution. 
Hence, we used a non-parametric approach to test for statistical significance between two 
phenotypes. First, we ranked all normalized data for each fragment-end independently, and 
set ties to the minimal value. Subsequently, we binned, along the locus, the ranks of 21 
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fragment-ends and calculated the m x n rank frequency matrix (m = 2; i.e. the number of 
different phenotypes; n = number of samples). We merged the columns of the frequency 
matrix based on the order of each phenotype and the number of samples, e.g. if the first 
ranked phenotype, based on the enumeration of the rank frequencies multiplied by the 
rank number, has been sampled three times, the first three columns of the m x n matrix are 
merged by adding up the row values, and the other columns are merged similarly resulting 
in a 2 x 2 matrix. Moreover, a Χ2-test was applied on this 2 x 2 contact frequency matrix. 
The p-values were corrected for multiple hypothesis testing using the Benjamini-Hochberg 
method. The R statistical package version 3.2.2 was used for the statistical calculations and 
for generating the 4C-seq contact plots.

RESULTS

AML1-ETO attenuates CEBPA expression in myeloid cells 
From unsupervised clustering of gene expression profiling data conducted in 528 AML 
patients, AML1-ETO patients form an independent gene expression cluster from the rest of 
the AML patients (Fig.1a). All AE patients harbor relatively low levels of CEBPA transcripts 
(Fig.1a and 1b). To investigate the causal relationship between AE fusion oncoprotein and 
low CEBPA expression levels, we retrovirally introduced an IRES-GFP construct containing 
either the full-length form of AElong, the DNA binding mutant AEDBmut form of AML1-ETO[19] 
or an empty vector (EV) control into HL-60 cells. Sorted GFP+ HL60 cells transduced with 
AElong, but not cells with AEDBmut or empty control vector, showed significantly lower CEBPA 
mRNA levels (Figure 1c). Given that extended time points of AE expression exhibit increase 
in cell death in cell cultures[20], it limited the number of cells to study the dynamics of 
CEBPA deregulation caused by AElong. Using a TET-off inducible AE model in a U937 cell line 
[20], AE expression was majorly increased after 96 hours (Fig.S1), which was accompanied 
by a significant decrease in CEBPA expression at the mRNA (Fig.1d) and protein level (Fig.S1). 
To exclude that these AE-driven dynamic effects on CEBPA expression are accompanied by 
an additional genetic drift found in the cell line models used so far, we studied the effects of 
AE in purified human CD34+ umbilical cord blood (UCB) cells. AE-expressing CD34+ UCB cells 
showed similar low expression levels as the AElong positive cell lines Kasumi-1 and SKNO-1 
when compared with CD34+ MLL-AF9 UCB cells (Fig.1e). These data are in line with a previous 
study by Link et al, demonstrating loss of CEBPA in AElong CD34+ cells, whereas mutant AE 
constructs showed no effects [21]. Inducible shRNA knockdown of AE in Kasumi-1 cell line 
showed an increase in CEBPA expression over a timeframe of 72 hours (Figure 1fi and ii), 
similar to what was shown previously using a siRNA system targeting the AE fusion gene 
in Kasumi-1 cell line [22-24]. Together these data demonstrate an inverse causal relation 
between the presence of the fusion AE oncoprotein and expression of CEBPA in patients. 

AML1-ETO reverses the active chromatin state and conformation of a myeloid specific enhancer to inhibit CEBPA 
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Figure 1. Low CEBPA expression levels in the presence of AML1-ETO. (1a) Heat map showing clustering of a 528 
AML patient cohort based on gene expression profiling. AML1-ETO patients cluster together in a distinct group 
from the other AMLs. CEBPA expression levels are shown in black across the whole cohort. (1b) Average difference 
of CEBPA expression levels based on normalized array values, comparing AE AML patients with the other AML 
samples of the cohort. (1c) Relative CEBPA mRNA expression levels (2-ddCt) in HL-60 cell line transduced with an 
empty vector, AE and DNA binding mutated AE constructs. (1d) Relative CEBPA mRNA expression levels (2-ddCt) in 
Tet-off AE inducible U937 cell line after 72 and 96 hours without tetracycline. (1e) QPCR measuring AE and CEBPA 
expression on RNA harvested from CD34+ cells transduced with AE or MLL-AF9 [21] and grown in xenograft models. 
Expression was calculated using the 2-ddct method. (1fi and 1fii) Relative mRNA expression levels (2-ddCt) of AE 
and CEBPA in doxoxcyline induced AE shRNA Kasumi-1 relative to a shRNA scrambled control Kasumi-1. 
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AML1-ETO	highjacks	the	+42kb	enhancer	and	reverses	the	active	chromatin	state	of	
the CEBPA	locus	
We hypothesized that AE binding to the CEBPA locus downregulates its expression. The 
genome-wide AE binding profile was determined by ChIP-Seq in the t(8;21) cell line model 
Kasumi-1 and in three AML patient bone marrow samples carrying the AE fusion gene as 
the result of a t(8;21) translocation (Fig.2a). AE binds predominantly to the +42kb CEBPA-
enhancer [25], whereas enrichment was also observed at the +54kb potential enhancer and 
at the CEBPG promoter. The +42kb enhancer contains four conserved RUNX1 binding motifs 
within its conserved DNA sequence (Fig.S2a), which might all be occupied by AE, explaining 
the strong binding to this enhancer. 

The chromatin state of the CEBPA locus in myeloid cells is highly enriched with 
widespread acetylation of H3K27 and H3K9 across the whole CEBPA TAD [25]. We next 
sought to interrogate the CEBPA locus for active chromatin state changes that correlate with 
low CEBPA expression levels and the presence of AE. Genome-wide chromatin profiling in 
AML patients dissected AE patients (n=5) from other AML patients (n=5) in two distinctive 
groups, based on H3K9ac and H3K27ac profiling (Fig.S3 and S4). H3K9ac profiling showed 
significant enrichment-changes, predominantly occurring at +53kb, +42kb, +9kb, +3kb, 
-1.8kb and -29kb genomic regions (Fig.2b-2h). In addition, profiling for H3K27ac shows 
that most of the enhancers located downstream (+54kb, +42kb, +35kb, +29kb, +9kb, +3kb, 
CEBPA gene) and upstream (-29kb) of CEBPA have significant low H3K27ac enriched sites in 
AE patients expressed as trimmed mean of M-values (TMM), when compared to the other 
AMLs (Fig.3a-3j). The most significant enrichment-change is observed at the +9kb enhancer 
(Fig.2b, 2e, 3 and 3h). This enhancer is active in all CEBPA expressing tissues [25], suggesting 
that all the other 3’ enhancers in the locus collaborate with CEBPA through interactions with 
the +9kb enhancer, independent of the tissue or organ.

Based on all the findings obtained in AML patients, we hypothesize that AE binding to 
the CEBPA locus reverses the active chromatin, hence the de-regulation of CEBPA mRNA 
expression. Using the CD34+ cord blood cell system, the CEBPA locus was devoid of any 
of the H3K9ac or H3K27ac in the presence of AE (Figure 1e). In contrast, MLL-AF9 CD34+ 
cells the CEBPA locus was highly H3K9 and H3K27 acetylated (Fig.S5a and S5b), in line 
with CEBPA expression in these cell models (Fig1e).  We then used an inducible AE shRNA 
knockdown system in Kasumi1 model and showed that upon shRNA activation, H3K27ac 
chromatin was widely enriched throughout the CEBPA locus (Fig.S6), recapitulating previous 
reported findings H3K9ac results derived from AE knockdown using a siRNA system [22-24]. 
We conclude that AE binds the +42kb enhancer to reverse the active chromatin state of the 
whole locus, which explains the increased CEBPA mRNA levels upon knockdown of AE in 
Kasumi1 (Fig.1e).
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+42kb enhancer looping with CEBPA through the +9kb enhancer is lost in AE AML blasts.
CEBPA engages into a chromatin loop with its 3’ enhancers in myeloid cells. We hypothesized
that enhancer de-acetylation in AE cells coincides disturb chromatin looping. To determine
whether the enhancer loses engagement with CEBPA in the presence of AE, we applied
high resolution 4C-seq in a cohort of AML samples with a translocation t(8;21) and low
CEBPA expression (n=3), compared with AMLs without AE fusion gene and with mid-to
high CEBPA expression levels (n=4). Patient characteristics are shown in Table 1. We used
the +42kb enhancer as the anchor point since it is the main region at which AE binds in
the CEBPA locus. A semi-quantitative analysis of 4C-seq revealed a strong interaction of
the +42Kb region with the +9kb enhancer, and to a lesser extent with the CEBPA gene and
promoter. The +9kb enhancer forms a chromatin complex with +42kb enhancer possibly
to regulate CEBPA gene expression, which is in line with the strongest H3K27ac or H3K9ac
enrichment observed at the +9kb enhancer in the absence of AE (Figure 2b and 3a). In fact,
AE AML patients show a significant decrease in the interaction between the +42kb enhancer
and the +9kb enhancer, which complements with the loss of active chromatin state and
CEBPA expression in these patients. The chromatin interactions with the CEBPG locus (Fig.4a
and b) appeared stable and were not different between the AE AML patients and control
AMLs. (Fig.2b and Fig.3a) Altogether, these findings compliment the line of thought that AE
disturbs CEBPA expression interfering with looping interactions with its enhancers, possibly
via a de-acetylation mechanism.
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Figure 3. AE deactivates H3K27ac at active enhancers within the CEBPA locus. (a) ChIP-seq of H3K27ac in control 
AML patients (light blue) (n=5) compared with AE AML patients (light red) (n=5); (b-j) Differential H3K27ac 
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t-Test (p<0.05).
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DISCUSSION

Cell lineage commitment and differentiation in the bone marrow are driven by the interplay 
of TF networks that establish chromatin states of differentiation related genes. In neutrophilic 
differentiation, TFs physically bind to critical gene loci, modulate their chromatin state and 
regulate expression of target genes. The CEBPA locus is highly occupied by a TF network 
in CD34+ HSPCs, which binds predominantly to its autonomous +42kb enhancer. Some of 
the major players in this network are commonly deregulated by oncogenic mechanisms 
in AML, including FLI1[25], ERG[26, 27], GATA2[28, 29], RUNX1[13, 15, 30], LYL1[31], and 
LMO2[32]. In myeloid differentiation, RUNX1 binds to the +42kb enhancer to form a feed-
forward loop to to drive differentiation of committed myeloid progenitors[6]. In AML, RUNX1 
exhibits point mutations in its coding sequence[12, 14, 33] and is recurrently involved in 
chromosomal translocations such as t(8;21) and t(3;21), leading to the generation of RUNX1 
fusion genes and haploinsufficiency of the wild-type RUNX1 protein[15]. 

The reciprocal translocation t(8;21) generates a fusion oncoprotein RUNX1-RUNX1T1 
(RUNX1-ETO or AML1-ETO (AE), which hijacks the myeloid differentiation program by 
attenuating the expression of early myeloid genes, including CEBPA[22-24]. In our cohort of 
patients, we observed that the AE subgroup exhibits low CEBPA expression levels compared 
to other AML patients (Fig.1). Moreover, unsupervised clustering of gene expression 
analysis of AML patients shows that all AE patients are clustered within the same group, 
indicating that AE is the common abnormality that drives the disease in the AE AML subtype. 
A study by Dan Tenen and colleagues reported similar observations, and they proposed a 
mechanism stating that AE interferes with the binding of the C/EBPα protein to its own 
promoter by disrupting its auto-regulatory loop required for sustaining CEBPA expression 
levels[24]. However, the absence of genome wide technologies at the time the study was 
conducted, limited the authors to reach optimal conclusions. Using ChIP-seq to identify the 
genome wide profile of AE binding to DNA, we show that the fusion oncoprotein binds 
predominantly at the +42kb enhancer within the CEBPA locus in AE patients and in cell line 
models, rather than the CEBPA promoter. 

We hypothesized that AE binding to the enhancer caused changes in the chromatin 
state and conformation of the CEBPA locus leading to the observed decreased expression 
of the gene. Changes in the chromatin state takes into consideration several aspects of 
chromatin structure and function, which are involved in transcriptional control. These 
include, the post-translational modifications at N-terminal sites of histone tails [34, 35], 
the recruitment of PolII at enhancer regions[36], the production of bidirectional enhancer 
RNAs [37-39] and the participation of chromatin factors that write, maintain and erase 
the histone code[40]. Acetylation of histones on lysines such as H3K27ac and H3K9ac are 
associated with active transcription[34]. These histone marks are catalyzed by two different 
histone acetyl-transferases (HATs) protein complexes. The GCN5/PCAF complex acetylates 
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H3K9 whereas CBP/p300 catalyzes the H3K27[41, 42]. Both the GCN5/PCAF complex and 
the CBP/p300 complexes are chromatin writers of acetyl residues to lysines. By conducting 
genome-wide histone profiling of both marks in AE patients (low CEBPA expression) and 
a control cohort with higher CEBPA expression levels, we found that H3K9ac as well as 
H3K27ac levels were relatively low at the +42kb enhancer in AE expressing cells. This can be 
explained by differences in protein complex recruitment by AE to specific gene loci. In fact, 
upon knockdown of AE, H3K9ac [22-24] and H3K27ac are severely increased in a genome-
wide fashion in Kasumi-1 cells. This is a striking observation because it indicates that there 
is a selective recruitment capacity of specific protein complexes by AE that alters specific 
histone modifications to deregulate genes. Our results suggest that AE might compete with 
specific HATs for acetylated regions occurring at H3K9 as well as on H3K27, genome-wide. 
We hypothesize that this can occur by the oncogenic recruitment of histone deacetylase 
(HDACs) complexes via AE that will overcome the normal physiological function of PCAF/
GCN5 or CBP/p300. The family of NAD+ dependent histone deacetylases known as sirtuins, 
particularly SIRT1 and SIRT6, are responsible for deactylation of H3K9 residues and are also 
expressed in myeloid cells [43-45]. Whether SIRT1 and SIRT6 are found in the AE protein 
complex and recruited to the +42kb enhancer is yet to be determined. Further functional 
experiments are recommended to study the interplay between PCAF/GCN5, CBP/p300, 
HDACs (in this case SIRT1, SIRT6) and AE to investigate how they act in the same protein 
complex to hijack the CEBPA-enhancer and its expression levels in AML.

An active chromatin state correlates with the engagement of genes to corresponding 
enhancers in a chromatin loop. We previously showed that CEBPA is located in a topological 
associated domain (TAD) and interacts with its +42kb enhancer mainly in CEBPA expressing 
myeloid cell lines. The CEBPA TAD contains two genes, CEBPA and CEBPG. We and other 
groups have shown that the +42kb enhancer is critical for CEBPA regulation but not for CEBPG 
[7, 46, 47]. We show by 4C-seq that in the presence of AE the +42kb enhancer dissociates 
from the CEBPA gene in AML patients, potentially causing its down-regulation. We observed 
that the the +42kb enhancer forms a loop with the +9kb enhancer of  CEBPA and that this 
interaction is absent in AE patient cells. (Fig.4b). This suggests that the +9kb enhancer plays 
an important role in CEBPA gene activation. This observation is supported by findings in this 
study (Fig.2b and Fig.3a), demonstrating that the +9kb enhancer shows the highest and 
most significant loss of H3K9ac and H3K27ac enrichment in the presence of AE, and from 
a previous study in which we showed that all hematopoietic and non-hematopoietic cells 
expressing CEBPA have an active +9kb enhancer[7].

Does AE protein on its own cause loss of interaction between the +42kb and the +9kb 
enhancer and is this the main cause of histone deacetylation and subsequent downregulation 
of CEBPA mRNA levels? Tethering experiments to investigate the gene deregulation effect 
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of AE can be applied using genome editing systems to target specifically the enhancer by 
transcriptional repressing protein complexes. For instance, fusing dCas9 with ETO or any of 
its repressive protein complexes, such as HDACs or SIRT de-acetyl transferases, will allow 
us to study in a time-wise fashion how the loss of acetylation marks at the CEBPA locus 
deregulate gene expression and chromatin topology. In a recent study, tethering HDACs 
to a specific locus showed negative effects on H3K27ac levels and on the expression level 
of the gene of interest[48]. Whether the chromatin changes occur sequentially or as 
independent events has still to be determined [49]. In conclusion, the results described 
in this study report how the AE oncoprotein inactivates gene expression by reversing the 
active chromatin state of the CEBPA TAD in myeloid progenitors and disturbs chromatin 
interactions that are thought to support transcriptional activation. This mechanism of how 
oncoproteins deregulate genes can be used as a paradigm for other oncoproteins in AML 
and might serve as a platform for therapeutic implications. 
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SUPPLEMENTARY FIGURES

Supp. Figure1. Western blot using antibodies directed to ETO or CEBPα showing increased ectopic expression of AE 
in U937 cell line and reduction of C/EBPα expression across different time points, post tetracycline.
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based on genome-wide H3K9ac patterns.
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table 1

Patient Number Material AML Subtype

37937 BM3 AE

2204 BL2 AE

2208 BL4 AE

5357 BM3 AE

37938 BM3 AE

6365 BL3 inv16

2188 BL3 DNMT3A

2227 BM4 NPM1

5358 BM3 MLL

4342 BL3 NPM1
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ABSTRACT

A constant daily production of blood cells requires tight regulation of cell differentiation to 
accomplish steady-state hematopoiesis. Hematopoiesis is mainly governed by transcription 
factors (TFs) that prime gene expression programs and commit the long-term hematopoietic 
stem cells (LT-HSCs) into hematopoietic progenitor cells (HPCs) and towards terminally 
differentiated cells. The neutrophil gene expression program is activated by C/EBPa, a leucine 
zipper TF indispensable for neutrophil development. Knockout of Cebpa or its myeloid 
specific +37kb Cebpa-enhancer in mouse models have two major effects: (1) neutropenia 
in bone marrow and peripheral blood; (2) decrease in LT-HSC numbers. Whether the latter 
finding is cell autonomous (intrinsic) to the LT-HSCs or an extrinsic event exerted on the 
stem cell compartment is not clear yet. We investigated this in a knockout mouse model of 
the +37kb CEBPA-enhancer generated in embryos by CRISPR/Cas9. Transcriptomics using 
RNA-seq on bulk HPCs and single LT-HSCs show that Cebpa is expressed in HPCs but not in 
LT-HSCs. In line with these results, FACS analysis in the Cebpa-enhancer knockout model 
showed that the reduction in LT-HSC numbers observed was proportional to the degree 
of neutropenia. These findings suggest that (1) Cebpa primes the neutrophilic lineage in 
HPCs but not LT-HSCs, and that (2) the negative effect on the stem cell numbers is more 
of an extrinsic event caused by neutropenic HPCs. To test this hypothesis, we used a sub-
lethal transplantation model and tail-injected wild type bone marrow cells as controls (n=8) 
and homozygous Cebpa-enhancer deleted neutropenic bone marrow cell (n=16) in healthy 
recipient mice. The neutropenic bone marrow cells did not show any evidence of leukemic 
out-growth at any time post-transplantation. However, recipient mice transplanted with 
neutropenic bone marrow cells showed physical weakness accompanied by hypocellularity, 
dysplasia, and eventually a complete block in differentiation of recipient bone marrow cells, 
which occurred between 10-15 months post-transplantation. These findings indicate that 
Cebpa-enhancer deletion causes a cell autonomous neutropenia, which later imposes a 
negative effect on LT-HSCs causing latent severe bone marrow dysfunction as an extrinsic 
event.   
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INTRODUCTION

Differentiation and proliferation of hematopoietic stem and progenitors (HSPCs) requires 
tight regulation to maintain a constant production of blood cells in the bone marrow. HSPCs 
are highly heterogeneous and constitute a mixture of lineage precursors cells that make 
up the myeloid and the lymphoid lineage[1-3]. General HSPC transcription factors (gTFs) 
such as RUNX1, PU.1 or GATA2 control myeloid fate progenitors and activate lineage specific 
TFs (LTFs) to drive differentiation into various myeloid lineages including neutrophils, 
eosinophils, basophils, monocytes, macrophages and dendritic cells[4, 5]. 

C/EBPα is the major LTF that drives the neutrophilic differentiation program in HSPCs 
and myeloid fate progenitors [6-8]. General TFs in HSPCs bind and activate the Cebpa 
+37kb enhancer (+42kb in humans) to modulate Cebpa expression levels in neutrophilic 
differentiation. Knock out of Cebpa or its +37kb enhancer in mice show a striking neutropenia 
in both the peripheral blood (PB) and BM, followed by the expansion of myeloid fate 
progenitors [9-13]. In vivo reporter studies for Cebpa and its +37kb enhancer show that their 
activity increases upon differentiation i.e. 10-20% in HSPCs to 60-80% in myeloid progenitors. 
The most primitive long-term HSC population, defined by Lineage- Sca1+ cKit+ and CD48-
CD150+ immuo-phenotypic markers, exhibits a detectable low 4% [13, 14]. Whether Cebpa 
is intrinsically critical for the function of LT-HSCs requires further investigation

Previous studies linked the function of Cebpa to neutrophil lineage priming in HSCs. 
Haseman et al. claimed that Cebpa binds to genes in HSPCs, which are expressed at later 
stages of neutrophilic differentiation[15]. In addition to its priming function, Cebpa is also 
critical for the function and maintenance of HSCs in the bone marrow. Conditional knockout 
of Cebpa increase the rate of apoptosis in HSCs, hence clarifying the observed decrease in 
numbers [15]. Previous studies showed that loss of Cebpa expression in HSPCs leads to an 
increase in self-renewal capacity via the upregulation of Bmi1 and n-Myc [10, 16], explaining 
the increase in proliferative potential in HSPCs. There are two reasons that jeopardize the 
claims raised by these studies:  First, although claiming a biological function for Cebpa 
in HSCs, these studies were conducted in the LSK or HSPC BM cell populations, possibly 
because the number of stem cells required to conduct these experiments poses a challenge 
to obtain the required amounts. Second, the global effect on the stem cell population 
number observed is relatively more than the number of Cebpa-expressing HSCs claimed in 
the reporter studies[13,14]. This poses the question whether the reduced LT-HSC numbers 
observed in these models are cell intrinsic (cell autonomous) or caused by extrinsic events. 

These results suggest that consequences of Cebpa knockout might lead to defects 
in differentiated lineages which can affect the HSC in a cell-extrinsic manner. A recent 
perspective review supports the hypothesis of HSC extrinsic effects in the CEBPA knockout 
phenotype: neutropenia caused by Cebpa knockout or enhancer deletion induces a feedback 
mechanism to activate HSCs and recover neutrophil differentiation. Prolonged neutropenia 
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will ultimately lead to the consumption and exhaustion of HSCs [15]. Another hypothesis 
addressed was that circulating neutropenic progenitor cells exert negative influence on the 
bone marrow, which ultimately leads to failure[17]. 

To investigate whether reduced HSC numbers are caused by neutropenia, we used the 
+37kb enhancer deletion model characterized by loss of Cebpa expression, neutropenia and 
decreased CD48-CD150+ LT-HSC numbers [18-21]. We found that Cebpa is expressed in LSKs 
but not in the more primitive LT-HSC population. The degree of neutropenia correlated with 
loss of LT-HSC number, which appeared to be enhancer-dosage and consequently Cebpa-
level dependent. To further investigate the association between neutropenia and the loss 
of HSCs over a prolonged time-course, we conducted transplantation experiments of +37kb 
enhancer deleted BM cells into sub-lethally irradiated recipient animals. After 10-13 months 
post-transplantation, the mice transplanted with enhancer-deleted neutropenic cells 
exhibited BM defects characterized by hypo-cellularity, dysplasia and defects in cell lineage 
differentiation of recipient bone marrow progenitors. We conclude that an intrinsic deletion 
of +37kb enhancer causes persistent neutropenia that translates into a latent and extrinsic 
event that negatively influences hematopoiesis of the host.
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RESULTS

Deficiency of the neutrophil gene expression program is cell autonomous in enhancer 
deleted HSPCs 
The hematopoietic stem and progenitor cell (HSPC) population is composed of a 
heterogeneous multi-lineage pool of precursor cells [22]. To understand the role of the 
+37kb-Cebpa-enhancer in neutrophilic lineage priming in HSPCs, we investigated the 
transcriptome differences of FACS sorted bone marrow LSK fractions obtained from +37kb 
enhancer deleted (+37kbHOM) (n=3) and wild type (+37kbWT) (n=3) mice as control. Based 
on FPKM values, Cebpa is expressed at relatively low levels (Fig.S1) in wild type (+37kbWT) 
sorted LSK fractions, indicating that only a small proportion of HSPCs that express Cebpa are 
primed for neutrophilic differentiation [13, 14]. In the +37kbHOM LSK cells, Cebpa expression 
was significantly reduced (Fig.S1), confirming the regulation of Cebpa transcription by the 
+37kb enhancer occurs in immature HSPCs. In addition, other genes involved in neutrophilic 
priming and maturation were significantly lower in the +37kbHOM LSK fraction, including 
Camp, S100A8/9, Cish, Ccl3, Ngp and Ebi3 (Table1; Figure 1a and b)[23]. Surprisingly, the 
Mpo gene is increased in the +37kbHOM LSKs. Ectopic reduction of Cebpa expression causes a 
stoichiometric cell lineage imbalance and a cell-fate bias towards other cell lineages [24-27]. 
In fact, Tcf7 and Bcl11b T-cell related genes (Figure 1a) as well as the LTFs critical for pre-
monoyctic/dendritic cells, Irf8 and Id2 (FigS1), were also increased in levels [28, 29]. These 
gene expression datasets demonstrate that deletion of the +37kb enhancer inactivates 
Cebpa and abrogates priming of neutrophil differentiation in LSK cells. 

CEBPA-enhancer dosage correlates with neutropenia in bone marrow and peripheral 
blood 
The loss of a neutrophil associated gene expression signature in the LSK population of 
+37kbHOM mice led us to assess the downstream consequences on neutrophil maturation. 
We hypothesized that the Cebpa-enhancer dosage corresponds to the degree of neutrophil 
maturation. We therefore studied the effects of +37kb enhancer deletion on peripheral 
neutrophil counts in 6-8 weeks old +37kbHOM(n=8), +37kbHET(n=7), and +37kbWT mice (n=14) 
(Figure 1c). The +37kbHET mice, which are predicted to exhibit 50% Cebpa expression levels, 
had a significant decrease of Mac1+Gr1+ neutrophils when compared to controls (Figure 
1c and 1d). The +37kbHOM mice do not express Cebpa and showed low to no Mac1+/Gr1+ 
neutrophils in BM and PB  (Figure 1c and 1d). Histopathology of the +37kbWT and +37kbHOM 
mice using hematoxylin and eosin (H&E) staining confirmed the marked loss of mature 
neutrophils in the BM (Figure 1e). In complement with these findings, we stained BM sections 
with the myeloid marker S100A8 and found 80-90% positivity in +37kbWT mice, compared 
to 3-7% positivity in +37kbHOM mice (Figure 1f). These data are in line with RNA-seq data, 
showing decreased S100A8 mRNA levels in +37kbHOM LSK cells (Figure 1a). Signs of dysplasia 
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were detected in the +37kbHOM mice in the myeloid lineage and more predominantly in 
megakaryocytes, which appeared hypo-lobulated and in microcytic forms (red arrows in 
Figure 1e). The cellularity and bone architecture were normal with regular bone aligning 
cells and no changes in bone architecture. We conclude that a gradual reduction of enhancer 
dosage between heterozygous and homozygous enhancer knockouts, correlates with the 
degree of neutropenia and dysplasia occurring in the +37kbHOM mice.

Perturbed LT-HSC signature in the +37kb-CEBPA-enhancer deleted HSPCs
We next investigated the gene expression profile of WT compared to +37kbHOM LSKs and 
looked specifically into genes that constitute the HSC gene signature [30] (Figure 2a). In 
particular, Mecom and Meis1 were severely down regulated in +37kbHOM LSKs. It is well-
established that Mecom is expressed in LT-HSCs and its expression is reduced upon further 
differentiation [31-33]. To determine whether the change of the HSC expression signature is 
an intrinsic consequence of enhancer deletion, we investigated whether Cebpa and Mecom 
are co-expressed in the same cells or whether the two genes are expressed in separate 
populations. Single cell RNA-sequencing (scRNAseq) data [34] from wild type LSKs and LT-
HSCs (Figure 2b) showed that Cebpa is expressed in a small subset of LSK cells, but not in 
LT-HSCs, whereas Mecom is only expressed in LT-HSCs. Because Cebpa is not expressed in 
LT-HSCs but in a subset of LSKs, the reduction in Mecom expression in the Cebpa-enhancer 
deleted LSKs is more likely to be caused by extrinsic effects on the LT-HSCs.  Moreover, based 
on scRNA seq, the strong downregulation of Meis1, Egr1, Gata2, Cxcr4 and Stil in +37kb 
enhancer deleted progenitors (Figure 2a), can neither be explained by intrinsic Cebpa loss, 
since the majority of cells expressing these genes in the LSK-fraction are Cebpa negative 
(Figure 2b).

Figure 1 : Cebpa-enhancer deletion inactivates neutrophil lineage priming in LSKs. (1a left): Heat-map showing 
the 11 most downregulated genes (green) and the 11 most upregulated genes (red). (1a right) Fold change of the 
11 most downregulated genes in green bars (neutrophilic associated genes are shown in red) and the 11 most 
upregulated genes are shown in red bars from an RNA-seq analysis of LSK +37kbHOM (n=3) in comparison/relative 
to LSK wild type mice (n=3). (1b) Graph showing 14 selected neutrophil associated genes from RNA-seq data which 
are differentially regulated in LSK of +37kbHOM mice when compared to wild type mice. The genes were selected 
from a previous publication[22]. (1c) FACS plots of peripheral blood and bone marrow analysis from wild type, 
+37kbHET and +37kbHOM using neutrophil markers Mac1 and GR1. (1d) Absolute numbers of Mac1 GR1 positive 
cells in peripheral blood and bone marrow of wild type, heterozygous +37kb enhancer deleted and homozygous 
+37kb enhancer deleted mice. (1e) Hematoxylin and Eosin stain of bone marrow sections (left) and S100A8 
immuno-staining (right) used as a neutrophil differentiation marker on bone marrow sections from wild type 
and homozygous +37kb enhancer deleted mice. Red arrows showing normal megakaryocytes in wild type and 
abnormal small and hypo-lobulated megakaryocytes in homozygous+37kb enhancer deleted bone marrow. LSK: 
lineage, Sca-1, c-Kit; +37kbHOM: +37kb homozygous deleted mice; +37kbHET: +37kb heterozygous deleted mice. A 
non-parametric student t-test was used: pvalue= <0.05 (*); pvalue= <0.005 (**). 
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Figure 2. SLAM CD150+ HSC population reduction in +37kbHOM mice is independent of the CEBPA-enhancer 
deletion. Fold change of HSC related genes shown in a bar graph (left) and represented as heat-map (right) from 
RNA-seq analysis of LSK populations from homozygous deleted mice compared to wild type mice.  (2b) Single cell 
analysis of wild type LSKs and wild type SLAM HSCs showing distinct and independent cell populations based on the 
expression of Mecom and Cebpa. (2c) FACS plots showing CD150+CD48- SLAM HSCs gated from LSK populations 
(lineage negative, Sca-1 positive, c-Kit positive) from bone marrows of wild type, +37kbHET and +37kbHOM mice. (2d) 
Absolute numbers of SLAM CD150+ HSCs from bone marrows of wild type, +37kbHET and +37kbHOM mice. A non-
parametric student t-test was used: N.S.= not significant; pvalue= <0.05 (*); pvalue= <0.005 (**).
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Reduction of CD150+ HSCs correlates with the degree of neutropenia in +37kbHET and 
+37kbHOM mice
The down-regulation of HSC-related genes in non-Cebpa expressing LT-HSCs of the +37kbHOM 
mice led us to investigate the LT-HSCs numbers in +37kbHOM and +37kbHET BM relative to 
the BM from +37kbWT mice, using SLAM CD48 and CD150 markers. Expansion of MPPs 
(CD48+ CD150-) was noticed as previously reported [11], probably compensating for loss 
of neutrophilic differentiation. This results in a left-shifted hematopoiesis that does not 
reach HSC levels but only leads to expansion of progenitors. The LT-HSCs were significantly 
reduced (p=<0.005) in the +37kbHOM mice (figure 2c and d), coherent with enhancer dosage 
and the degree of neutropenia. In line with our RNA-seq results, the absolute numbers of 
the LT-HSC population are significantly reduced upon enhancer deletion, which explains the 
perturbed HSC gene expression signature and come to the conclusion that this occurs as an 
independent and extrinsic event. 

Mice transplanted +37kbHOM BM cells are neutropenic and exhibit low chimerism
To test the hypothesis whether neutropenia has a negative influence on the hematopoietic 
system as an extrinsic event, we conducted transplantation experiments. Three cohorts of 
sub-lethally irradiated recipient CD45.1 mice (8 mice per cohort) were transplanted with 
comparable numbers (See Materials and Methods) of Lin- cells of CD45.2 bone marrow 
cells derived from either +37kbWT(N=8) +371.2kb (N=8) or the +371.15kb (N=7) homozygous 
deleted mice [11] (Figure 3a). These two different strains were generated via a random 
recombination event induced by CRISPR/Cas9, which resulted in two mouse strains with 
various enhancer deletion sizes; the expected 1.2kb (+371.2kb) deleted size and a 50bp 
shorter enhancer deletion of 1.15kb (+371.15kb) (Figure S2 and [11]). PB samples drawn 
twelve weeks after transplantation showed that mice transplanted with WT BM had 
comparable donor (45.2) to recipient (45.1) chimerism in the PB (Figure 3b) .The wild type 
mice showed reconstitution of both
the myeloid and the lymphoid lineages (Figure 3c and 3d). The two mouse cohorts 
transplanted with +37kbHOM BM showed a weak donor-to-recipient chimerism (Figure 3c), 
with only 2-40% (Median: 3.4%) of blood cells derived from the 45.2 donor cell origin. 
Similar to the wild type transplanted host, mice transplanted with +37kbHOM bone marrow 
cells showed a marked increase in CD3+ T-cells. The Mac1+Gr1+ cells were derived from the 
host only, with similar values compared to transplanted wild type controls. The absence of 
+37kbHOM donor-derived Mac1+Gr1+ cells confirms the intrinsic and cell autonomous defect 
in neutrophilic differentiation caused by the +37kb CEBPA-enhancer deletion. 
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Figure 3. Transplanted enhancer deleted bone marrow cells show low chimerism and are neutropenic. (3a) 
Transplantation scheme representing donor (45.2) wild type, donor (45.2) homozygous 1.2kb deleted and donor 
(45.2) homozygous 1.15kb deleted (n=8) bone marrow cells transplanted in (45.1) recipients. Eight recipient mice 
per condition (n=24) were used in the experiment. (3b) Bar chart showing percentage of 45.1 and 45.2 cell chimerism 
in peripheral blood twelve weeks after transplantation of wild type and homozygous. (3c and 3e) Peripheral blood 
withdrawn from recipient mice transplanted with wild type (3e) and homozygous enhancer deleted (3d) bone 
marrow cells after twelve weeks of transplantation. FACS plots showing Mac1Gr1+ neutrophils, CD3 and B220 
lymphocytes gated from 45,1 and 45.2 populations. (3d and 3f) Bar charts showing percentages of CD3+ T-cells, 
Mac1Gr1 Granulocytes and B220 B-cells calculated from peripheral blood of recipient mice transplanted with 
wild type (3d) and homozygous enhancer deleted (3f left and right) bone marrow cells after twelve weeks of 
transplantation.

Long exposure of circulating neutropenic cells causes cytopenia and dysplasia   in 
recipient  bone marrow 
Despite the pre-leukemic properties of +37kbHOM BM cells in vitro[11], we did not find 
any signs of leukemia in the recipient mice. Chimerism was low upon transplantation of 
the +37kbHOM BM cells until the 10th month post-transplantation (Figure S4). Three mice 
transplanted with +37kbHOM bone marrow cells died from unknown causes, with extensive 
palpable growth in the breast (n=2) and colon (n=1) (Table 2). Of the mice transplanted 
with WT BM, one had a CD34+ CD16/32 clonal population that was also Mac1Gr1 positive 
in bone marrow and spleen (data not shown). Follow up analyses on total white blood 
cell count, from the 10th to the 14th month post-transplantation, were conducted for both 
wild type and +37kbHOM transplanted mice. For the remaining +37kbHOM (13/16) and wild 
type (7/8) transplants, PB cell counts were analyzed monthly. Six of the +37kbHOM showed 
physical weakness and a severe loss of wild blood cell counts was observed (Figure S5a). 
Five  of these  mice were analyzed further. We classified these mice as +37kbHOM-severe, based 
on cellularity and degree of qualitative changes (dysplasia) in the BM. Cytopenia was only 
seen  in the +37kbHOM transplanted mice but not in mice transplanted with wild-type bone 
marrow cells (Figure 4a and 4b). We compared the results of the +37kbHOM-severe mice with 
wild-type sacrificed animals and mice transplanted with +37kbHOM marrow which did not 
(yet) develop a cytopenia, which we classified as +37kbHOM-N/I (N/I = normal to intermediate) 
(n=8). White blood cell counts were comparable between the +37kbHOM-N/I mice and +37kbWT 
controls. No differences were observed in hemoglobin levels, but peripheral blood platelet 
counts decreased significantly in the +37kbHOM-severe subgroup, and to a lesser extent in the 
+37kbHOM-N/I subgroup (Figure S5b and c). Given that on the day we sacrificed the mice the 
percentage chimerism of homozygous +37kbHOM donor cells was close to 0% (median = 
0.89%), all the cells analyzed were predominantly derived from the recipient (45.1). Bone 
marrow cellularity of the +37kbHOM-severe mice was significantly decreased more than two-fold 
compared to the other mice (Figure 5a). These findings comply with the reduced absolute 
numbers of the 45.1 LSK (Figure 5b) and LT-HSC population (Figure 5c) observed in the host.  
The histopathological examination results are in line with bone marrow cellular counts; 
+37kbHOM-severe bone marrows were characterized by dilated vessels filled with erythrocytes 
surrounded by sparsely interconnected hematopoietic cells with left-shifted hematopoiesis 
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as compared to wild type (Figure 5d) (Wild type; Severe). Bone marrow cellularity in the 
+37kbHOM-N/I mice varied from normocellular to hypocellular. Both the +37kbHOM-severe and 
the +37kbHOM-N/I cohorts showed microcytic hypo-lobulated megakaryocytes with dysplastic 
features (Figure 5b; Normal to Intermediate; Severe). This is in line with the decreased 
peripheral blood platelet counts (Figure S5c). These findings confirm that in the presence of 
circulating transplanted neutropenic bone marrow cells, the recipient hosts undergo bone 
marrow phenotypic changes with reduced HSC numbers, increased dysplastic features and 
a marked shift to the left hematopoiesis, suggesting cell differentiation failure.
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Figure 4. Cytopenia incidence and survival of transplanted mice. (a) Cytopenia incidence of mice transplanted 
with bone marrow of +37kbHOM mice (red line) versus wild type mice (blue line). (b) Cytopenia-free survival of 
+37kbHOM mice (red line) versus wild type mice (blue line).

Figure 5. Prolonged neutropenia exerts negative effects on HSPC numbers and myeloid cell differentiation. (4a) 
Total bone marrow cellularity per femur and corrected for body weight in grams of each mouse. The mice transplanted 
with homozygous bone marrow cells were divided into two subgroups: homozygous normal to intermediate and 
homozygous severe, based on bone marrow cellularity. (4b) Histological examination using hematoxylin and eosin 
on processed paraffin bone marrow sections of recipient mice: wild type control, homozygous donor with normal 
to intermediate phenotype and homozygous donor with severe phenotype. (4c) Lineage-veSca-1posc-Kitpos (LSK) 
absolute numbers calculated from LSK/lineage negative/live cells (7AAD) and corrected for total cellularity per 
femur and body weight (in grams) of each mouse analyzed. (4d-4f) Absolute numbers of Mac1 GR1, B-220 B-cells 
and CD3 T-cells from bone marrows of 45.1 recipient mice. (4g) LT-HSC absolute numbers calculated from CD48-
CD150+/LSK/lineage negative/live cells (7AAD) and corrected for total cellularity per femur and body weight in 
grams of each mouse analyzed. (4h) Immunohistochemistry of S100A8 protein expression on histological bone 
marrow sections of recipient 45.1 mice transplanted with wild type and homozygous recipient. A non-parametric 
unpaired T-test was used: N.S.= not significant; pvalue= <0.05 (*).
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Neutropenia prevails as a major lineage-differentiation host-derived defect in the 
+37kbHOM-severe transplanted mice
Next, we assessed neutrophil differentiation in the bone marrow. Given that the chimerism 
on the day of sacrificing the mice was close to 0%, the neutrophils investigated in these 
transplantation experiments are all derived from the host. Thus, any changes in neutrophil 
numbers reflect abnormal myelopoiesis coming from the bone marrow of the recipient 
mouse. Mac1Gr1 markers on selected host bone marrow cells showed a marked reduction 
of the neutrophil absolute counts in the +37kbHOM-severe, whereas the +37kbHOM-N/I mice 
showed normal to low counts, within a range comparable to the wild type controls (Figure 
5e). In adjunct with FACS analysis, we stained histological BM sections for protein expression 
of S100A8 as a marker for myeloid differentiation [34, 35]. BM from+37kbHOM-severe mice was 
almost devoid of S100A8 expression, which correlates with the loss of myeloid cells observed 
in the FACS analysis (Figure 5f). These results also comply with the reduction in S100A8/A9 
gene expression from our RNA-seq data in the Cebpa-enhancer deleted LSKs (Figure 1a and 
b). These findings suggest that transplanted +37kbHOM-severe cells induce a negative systemic 
influence on the bone marrow of the host resulting in bone marrow failure. 
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DISCUSSION 

In this study, we show that the role of Cebpa and its enhancer are responsible for neutrophil 
lineage priming in the LSK progenitors (or hematopoietic and stem cell progenitors - 
HSPCs), earlier than it was proposed. A recent study reported that Cebpa drives unilineage 
neutrophilic differentiation in the LK bone marrow population, a population that mainly 
constitutes progenitors of the myeloid lineage[23]. This is supported with our RNA-seq data 
showing that the expression of neutrophil associated genes in the LSK population is strongly 
down regulated upon enhancer deletion, indicating that Cebpa activates the neutrophil 
gene expression program and prime LSK progenitors for neutrophil differentiation[16]. The 
LSK population is heterogeneous and, by using SLAM markers, one can distinguish between 
the early primed HSPCs from long-term HSCs (LT-HSCs) that are able to re-populate the bone 
marrow throughout the lifetime of an organism[30]. Our findings support this emerging 
concept of unilineage hematopoiesis by showing that neutrophil lineage priming occurs at 
more primitive stages, i.e. in the LSKs rather than in the LK progenitors[23].

Based on previous studies [10-12, 15], the main question in this study was whether 
Cebpa and its enhancer are linked to an intrinsic function in HSCs. We showed that knockout 
of Cebpa or the +37kb Cebpa-enhancer has a dual intrinsic influence on neutrophil lineage 
priming and HSC numbers. Cebpa-enhancer knockout causes neutropenia in blood and 
bone marrow and lacks a significant proportion of LT-HSCs. In our study, we dissected these 
two events in separate models, i.e., a Cebpa-enhancer knockout model to study the biology 
of neutrophil lineage priming in HSPCs and a sub-lethal transplantation model to investigate 
the effects of prolonged donor neutropenia on the bone marrow integrity of the host as a 
HSC functional output.

LT-HSCs constitute a very small population of the LSK bone marrow fraction and 
constantly undergo different kinetics such as dormancy, quiescence, self-renewal and cell 
division, thus making it difficult to delineate a standard gene expression program to define 
them[36]. Deletion of the enhancer resulted in low LT-HSC numbers and downregulated HSC 
related genes. We used Mecom expression as a HSC marker in order to delineate any Cebpa 
expressing LT-HSCs. Mecom encodes a transcription factor known as EVI1 or PRDM3 that 
is specifically expressed in approximately 60% of LT-HSC population. Based on functional 
experiments, Mecom is critical for the development, maintenance and proliferation of HSCs 
[32]. Unlike previously reported [16], Cebpa was not expressed in any of the LT-HSCs analysed 
by single-cell RNA-seq and all Mecom+ LT-HSCs were Cebpa negative for expression. Cebpa 
was expressed in a subset of LSKs, which verifies that the negative influence on LT-HSCs 
upon enhancer deletion is not intrinsically related. 

Cebpa-enhancer and Cebpa knockout mice have very low LT-HSC numbers, which engraft 
poorly in lethally irradiated hosts[15, 37], possibly due to the low LT-HSC numbers. We used 
a sub-lethal irradiation setup to allow for reconstitution to take place from the host bone 
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marrow because of the low chimerism derived from the transplanted donor bone marrow 
cells. Even though the enhancer deleted bone marrow donor cells exhibit pre-leukemic 
characteristics, including a differentiation block and increased clonogenic capacity in 
vitro[11], the donor bone marrow cells did not outcompete the host cells but retained their 
differentiation block characteristics. 

How does a small population of donor cells blocked in differentiation can have such a 
strong negative impact on the hematopoietic system of the host? The lineage differentiation 
output of Mac1Gr1 neutrophils derived from the host was reduced to very low levels on the 
day we sacrificed the mice. This phenomenon can be explained by a negative influence the 
donor cells might exert on specific bone marrow niches that support myeloid development. 
Block in differentiation might fairly lead to aberrant production and secretion of molecules 
in the bone marrow that compromise its integrity and normal function [35]. In addition, 
there is an increased body of evidence that myeloid fate progenitors tend to form patches 
or clusters in pre-malignant and malignant conditions to influence normal hematopoiesis 
[38]. This is in line with recent studies that investigated how pre-leukemic and leukemic cells 
attenuate normal hematopoiesis by the secretion of cytokines, growth factors or exosomes 
[39-41]. 

Investigating different niche populations such as the mesenchymal stromal progenitors 
and osteoblasts would also provide a deeper insight whether such extrinsic event caused by 
neutropenia involves the niche directly. Our preliminary data suggest bone marrow niche 
involvement since we observe changes in cell numbers of bone marrow niche cells in the 
recipient mice transplanted with +37kbHOM (Fig.S7). We observed that megakaryocytes, 
which 6are also an important part of the HSC niche, exhibited dysplastic features thus, 
providing a slight indication that distinct niche constituents are also targets for deregulation 
in this experimental setup. 

We conclude that the CEBPA-enhancer mediates neutrophil lineage priming in HSPCs 
by activating C/EBPα expression and neutrophilic differentiation. Deletion of the enhancer 
causes neutropenia as a cell intrinsic and autonomous event. Prolonged neutropenia is 
later translated into an extrinsic event that suppresses normal hematopoiesis of the host. 
Practically, in humans this phenomenon is hardly seen since patients with severe neutropenia 
are treated immediately with intra-cutaneous GCSF (granulocytic colony stimulating factor) 
to boost up their neutrophil counts. Although the clinical relevance of this phenomenon is 
yet to be discovered, it is becoming more evident that aberrant circulating bone marrow cells 
exert effects on localized bone marrow areas to negatively influence normal hematopoiesis. 
They may also circulate to other peripheral organs where they trigger the onset of complex 
non-hematological disorders such as neurodegenerative diseases[42].
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MATERIALS AND METHODS

(1) RNA sequencing
Total sample RNA was extracted using Trizol with Genelute LPA (Sigma) as a carrier and 
SMARTer Ultra Low RNA kit for Illumina Sequencing (Clontech) was used for cDNA synthesis 
according to the manufacturer’s protocol. The cDNA was sheared with the Covaris device 
and further processed according to the TruSeq RNA Sample Preparation v2 Guide (Illumina). 
The amplified sample libraries were subjected to paired-end sequencing (2 x 75 bp) and 
aligned against mm10 using TopHat v256. All reads were aligned against genes annotated in 
the RefSeq Transcriptome database and remaining non-aligned reads were aligned against 
the full genome. Gene expression levels were quantified by the fragments per kilobase of 
exon per million fragments mapped (FPKM) statistic as calculated by Cufflinks. Hierarchical 
clustering analysis was performed on the FPKM values using complete linkage as clustering 
methodology and Euclidean distance as distance measure using the G-plots package in the 
R environment. Read counts were determined with HTSeq-count and subsequently used for 
differential expression analysis in DESeq2, with default parameters, in the R environment. 
Multiple testing correction was achieved by performing the Benjamini-Hochberg procedure 
on the calculated p-values to control the False Discovery Rate (FDR).

(2) Single cell RNA sequencing
Existing murine lineage-negative Sca1+ CD117+ cells (LSK) bone marrow progenitor single-
cell RNA-Seq data from the Fluidigm microfluidics platform (GSE70244) aligned using the 
RSEM algorithm [34]. SLAM captured HSCs were enriched, as previously described and 
profiled at by the Cincinnati Children’s Hospital Single-Cell Genomics Core as previously 
described [34] and co-analyzed with this existing LSK data. For expression visualization, log2 
RSEM TPM values are displayed for selected genes.  

(3) Mice and transplantation procedures
The strains of +37kb enhancer1.2kb and +37kb enhancer1.15kb deleted mice generated by 
CRISPR/Cas9 have been previously described. Animals were maintained in specific pathogen 
free conditions in the Experimental Animal Center of ErasmusMC (EDC). All mice are 
C57BL/6. Non-transplanted mice were sacrificed for FACS analysis between 4-8 weeks of 
age. For transplantation experiments, 24 mice were sub-lethally irradiated. On the same 
day, pooled bone marrows of wild type (CRISPR/Cas9 treated) mice, +37kb enhancer1.2kb and 
+37kb enhancer1.15kb deleted homozygous mice were harvested in PBS/5%FCS and injected 
intravenously in tails of (45.1) female mice. The 45.2 mice sacrificed for bone marrow 
harvesting were four weeks of age. Three cohorts of female 45.1 mice, were transplanted 
with wild type(n=8), 37kb enhancer1.2kb(n=8) and +37kb enhancer1.15kb(n=8) bone marrow 
cells. The number of transplanted bone marrow cells was corrected based on the LSK 
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population which was 5 times bigger in the homozygous compared to the wild type i.e. wild 
type = 1x106 and homozygous = 2x105 bone marrow cells per mouse/condition. All mice 
were sacrificed in a CO2

 chamber. Animal studies were approved by the Animal Welfare/
Ethics Committee of the EDC in accordance with legislation in the Netherlands (approval No. 
EMC 2067, 2714, 2892, 3062).

(4) Flowcytometry and sorting 
Flowcytometry was carried out on the LSRII and the FACSCanto II (Becton Dickinson) was 
used for cell sorting, using the following fluorescent antibodies: CD11B- APC/GR1-FITC/
B220-PE/CD45 PerCP CY5/LIN bio-cocktail streptavidin-pacific orange/cKIT-APC/SCA1-
PB/CD48-FITC/CD150-PE-CY7/. All antibodies were purchased from BD Biosciences and 
Biologend. Sorted LSK fractions were collected in 500µl PBS with 5% FCS, spun down and 
re-suspended in 800µl of Trizol and used for RNA-seq.

(5) Histology sections and staining
Bone marrows from mice were treated with 4% formaldehyde overnight, decalcified 
(EDTA), dehydrated and embedded in paraffin. Hematoxylin-eosin (H&E) staining was done 
according to routine protocols. For immunohistochemical staining, antigen retrieval of mice 
tissues was performed by pressure cooker treatment in citrate buffer (pH 6.0; Zytomed) and 
by microwave-heating for human samples. After Peroxidase blocking (DAKO for mice tissues; 
3%, AppliChem Panreac for human tissue) and incubation in blocking solution (5% Normal 
Goat serum, DAKO), sections were incubated using anti-S100a8 (Abcam, ab92331, 1:200). 
Biotinylated goat-anti-mouse/rabbit (DAKO, K5001) was used as secondary antibody. The 
avidin-biotin complex (ABC)–horseradish peroxidase (HRP) kit (DAKO, K5001) was applied 
for color development. Images were obtained using a Zeiss Axioplan microscope equipped 
with a Zeiss AxioCam ERc5s.  

(6) Statistics
Statistical analysis was performed using Prism 7 (GraphPad Software). Unpaired, two-tailed 
Student’s t test (single test) was used to evaluate statistical significance, defined as p < 0.05. 
All results in graphs are mean value ± SEM. Survival analysis: Cytopenia-free survival was 
defined as the start date (please describe t=0 when the experiment started) to cytopenia or 
death from any cause, whichever came first. Survival estimates were graphically represented 
with the Kaplan-Meier method. The log-rank test was used to compare the survival 
distributions of the groups. P-values are two sided and p-values <0.05 were considered 
statistically significant. Statistical analysis were performed in STATA statistical software, 
Release 15.1 (Stata, College Station, TX, USA).
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SUPPLEMENTARY FIGURES
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Supplementary Figure1. FPKM values of Cebpa, Irf8 and Id2, from RNA-seq experiments conducted on LSK sorted 
fractions of wild type (n=3) and homozygous (n=3) mice. 
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table 1 

Gene Protein (full name) Fold change (down) Function

AI848285 Shisa Family Member 8 -2,644665132 Unknown

Ngp Neutrophilic granule protein -2,609837162 Neutrophil cytoplasmic granule with cysteine-
type endopeptidase inhibitor activity

S100a9 S100 calcium binding protein 
A9

-2,405284626 Regulation of inflammatory processes; 
increase neutrophilic bactericidal activity

Ebi3 IL-27 subunit Beta -2,385582175 A heterodimeric cytokine which functions 
 in innate immunity

Hlf Hepatic leukemia Factor -2,21435241 Leucine zipper DNA binding factor

Camp cathelicidin antimicrobial 
peptide

-2,179885084 Neutrophil anti-bacterial peptide;  
Neutrophil degranulation

Hk3 Hexokinase 3 -2,171658723 Glycolysis; Neutrophil degranulation

Cyp2j6 cytochrome P450, family 2, 
subfamily j, polypeptide 6

-2,161487127 Monoxygenase; metal binding

Trib3 tribbles pseudokinase 3 -2,142603408 Protein kinase inhibitor

Mpl MPL proto-oncogene, 
thrombopoietin receptor

-2,140558486 Thrombopoietin receptor activity

Rbp1 Retinol Binding protein 1 -2,080710243 Regulation of granulocyte differentiation

Gene Protein (full name) Fold change (up) Function

Tcf7 Transcription factor 7 5,715925951 Transcriptional activator involved in T-cell 
lymphocyte differentiation

Cpa3 Mast cell Carboxypeptidase 3 4,710997644 Carboxypeptidase; metabolism of 
Angiotensinogen to Angiotensins

Scin Adseverin 4,22659805 Ca2+-dependent actin filament-severing 
protein; required for megakaryocytic 
differentiation

Bcl11b B-cell lymphoma/leukemia 3,096578829 Key regulator of both differentiation and 
survival during thymocyte development  
in mammals 

Ccr5 Chemokine Receptor 5 2,601170803 Receptor for a number of inflammatory  
CC-chemokines

Atp8b4 Phospholipid transporting 
ATPase

2,355680865 Transport molecule

Pdgfrb Platelet derived growth factor 
Beta

2,229151017 Tyrosine-protein kinase that acts as cell-
surface receptor

Fam189b Protein FAM189B 2,145325689 lysosomal enzyme glucosylceramidase;

Ctr9 RNA polymerase-associated 
protein CTR9 homolog

2,133128665 Associates with RNA polymerase II;  
Chromatin states and transcriptional  
control with MLL proteins

Mpo Myeloperoxidase 2,130607807 Microbicidal activity released by 
polymorphonuclear leucocytes

Gzmb Granzyme B 2,107236859 Enzyme necessary for target cell lysis in  
cell-mediated immune responses

Neutropenia caused by loss of Cebpa expression reduces hematopoietic stem cell numbers driven by a non-cell autonomous 
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SUMMARY OF THE THESIS

In this thesis the transcriptional control of the CEBPA gene is studied in human and in murine 
hematopoiesis. This thesis focuses on the discovery of enhancers that are responsible for 
CEBPA transcriptional control in the bone marrow in health and disease.

The second	 chapter of this thesis comprises a review that discusses novel concepts 
about the role of CEBPA in normal hematopoiesis and in disease. It focuses mainly on the 
many layers of transcriptional regulation of CEBPA, with particular interest on the function 
of the +42kb CEBPA-enhancer in hematopoiesis. Hypothetical insights were raised to 
address the importance of the enhancer to maintain CEBPA levels at a steady-state balance 
to protect the bone marrow from undergoing HSC consumption, exhaustion and later bone 
marrow failure. Moreover, the +42kb enhancer can potentially be targeted by oncogenic 
mechanisms to minimize CEBPA levels down to a threshold that it’s insufficient to drive the 
myeloid differentiation program and predispose myeloid committed progenitors to acute 
myeloid leukemia. In line with the importance of CEBPA levels in AML, the emerging role of 
CEBPA in the development of AML has been given particular attention since such findings 
confirm that CEBPA expression levels require transcriptional control in bone marrow 
progenitors throughout the lifetime of an organism to protect from onset of the 
disease. 
     The third	chapter describes thoroughly the CEBPA locus in humans and mice to identify 
potential enhancers that are responsible for CEBPA transcriptional control in myelopoiesis. 
The use of multi-technical approaches including active histone modifications, 
chromosome conformation capture and genome editing technology (CRISPR/Cas9 
approach) revealed that a primary responsive enhancer in the Cebpa locus, located at 
+42kb and +37kb in humans and mice, respectively, activates Cebpa and the neutrophilic 
gene expression program. This enhancer engages with CEBPA in myeloid cells only, 
suggesting tissue specificity. Germ-line knockout of the enhancer in murine models 
compromises Cebpa expression in the bone marrow only and halts the neutrophilic 
differentiation program causing neutropenia. In addition, germ line enhancer knockout 
influences the HSC population, which leaves it an open end for further investigations. In 
conclusion, this study characterized an important CEBPA-enhancer that has crucial 
implications in neutrophilic development.

     The fourth and the fifth	 chapter focus on the role of the non-coding region of the 
CEBPA locus in AML. A substantial number of AML patients exhibit relative low CEBPA 
expression levels compared to other AMLs. Within these subsets are AML patient subsets 
with known hematological abnormalities such as the fusion oncoprotein AML1-ETO, 
ectopic high EVI1, FLT3-ITD, DNMT3, and a subset of AMLs with no recurrent 
abnormalities. For the latter group, the link to low CEBPA expression levels was 
hypothesized to occur via mutations in the non-coding genome of the CEBPA locus. 
However, screening 200 AML patients including controls, did not find any recurrent 
point mutations or chromosomal abnormalities, 

7

Summary of the thesis and general discussion

THESIS_Roberto_Avellino.indd   173 07-05-18   10:18



174

except for one patient that harbored a bi-allelic deletion of CEBPA. These findings lead 
to conclusions that the CEBPA locus in AML is not targeted by mutations but potentially 
deregulated at the chromatin level. The mechanism by which  AML1-ETO, one of the most 
common recurrent abnormality in AML, causes low CEBPA expression levels is investigated 
in Chapter 5. We demonstrate that AML1-ETO binds to the CEBPA locus via the +42kb 
enhancer, reverses its active chromatin state, disengage enhancer-gene interactions, down-
regulate CEBPA expression and predispose bone marrow progenitors for the onset of acute 
myeloid leukemia.

In Chapter six, we partly tackled the unanswered question from Chapter two about the 
drop in HSC numbers in CEBPA-enhancer-deleted and neutropenic mice. The main question 
addressed is two-way; (1) whether deleting the enhancer leads to the loss of the HSC sub-
population that express Cebpa and shuts down the neutrophil differentiation program at 
the HSC stage, thus explained as a cell-autonomous effect; or (2) the neutropenia negatively 
influences the HSCs as an extrinsic effect in the absence of Cebpa. Using single-cell RNA-seq 
in combination with bulk RNA-seq in hematopoietic stem progenitor cells, the most primitive 
HSC population does not express Cebpa, thus excluding that enhancer deletion influence 
HSCs in a cell autonomous way. The second hypothesis was tested using a transplantation 
model. Transplanted enhancer-deleted (neutropenic) bone marrow cells induced HSC loss 
and latent bone marrow failure in recipient mice, suggesting that neutropenic bone marrow 
cells compromise hematopoiesis by using, undefined, extrinsic mechanisms.

In conclusion, this thesis reveals new mechanisms of how a CEBPA-enhancer acts as a 
primary switch to control neutrophilic differentiation and maintain bone marrow integrity. 
This enhancer is also a target for oncogenic deregulation of CEBPA expression in human 
AML, thus studying its function serves as a paradigm for epigenetic therapeutic targeting in 
the field of leukemia. 
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GENERAL DISCUSSION

8.1	Introduction
High throughput genome-wide sequencing technologies have revolutionized our knowledge 
of the structure and function of the genome [1, 2]. To-date we know that the non-coding 
genome, which was previously considered as non-relevant “junk” DNA[3, 4], regulates coding 
genes and comprises conserved DNA sequences termed enhancers that bind transcription 
factors and other nuclear proteins for transcription regulation[5-7]. 

Joined efforts from different consortia, such as encyclopedia of DNA elements ENCODE 
[5] and functional annotation of mouse (FANTOM) [8-10], are constantly providing and 
updating publicly available datasets to study and characterize chromatin states of 
enhancers in different tissues and species. These datasets offer a detailed 
representation of the regulatory genome based on histone modifications and binding of 
co-regulators involved in transcriptional control. In the last decade, high throughput 
sequencing was combined with other technologies to study chromatin composition, 
structure and function[11-14]. For instance, chromatin immunoprecipitation combined 
with high throughput sequencing (ChIP-seq) is majorly used to identify histone 
modifications and binding of transcription factors (or other chromatin-related proteins) 
genome wide to define the current state of the enhancer(s) under investigation. 
Additional technologies that contribute to chromatin profiling include DNase-seq and ATAC-
seq to study chromatin accessibility[15, 16]. Moreover, chromatin conformation capture 
(3C) based technologies reveal chromatin interactions between regulatory elements 
and corresponding gene promoters, which is a substantial hallmark of active 
enhancers[17-19]. In vitro and in vivo models are needed conduct functional 
experiments and determine the role of these elements normal physiology and disease. 
Conventional methods used to generate these models are labor intensive and time 
consuming. However, the advent of genome editing technologies such as transcription 
activator-like effector nucleases (TALENs) and clustered repeats of interspersed 
elements (CRISPR) increased the efficiency of DNA manipulation in primary tissues as well 
as in cell lines, and decreased the turnaround time to generate genetically 
manipulated in vivo models[20-23]. The main concept of this thesis is to reveal 
transcriptional mechanisms that regulate expression of CEBPA in neutrophilic 
differentiation and disease. We used the above approaches to characterize enhancers in 
the CEBPA locus to unravel their function using human cell lines and in vivo mouse 
models. We found that a myeloid specific enhancer located 42kb downstream of CEBPA 
is conserved between humans and mice (+37kb in mice) and acts as a primary switch 
to activate Cebpa expression during development and in adult life. Based on recent data 
in our models, we revised our hypothesis about CEBPA-CEBPG regulation and provided 
new insights stating that CEBPA and CEBPG are regulated independently from each other 
and that both genes are engaged in two separate chromatin loops. Then we questioned 
the role of the CEBPA locus in transcriptional deregulation
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in AML patients. We studied mechanisms of how CEBPA is deregulated in acute myeloid 
leukemia by oncoprotein enhancer hijacking and screened the CEBPA locus in AML patients 
for point mutations or chromosomal abnormalities that could be cryptic and undetected 
by conventional karyotype analysis. In Chapter 6 we further studied our finding showing a 
correlation between severe neutropenia in Cebpa-enhancer knockout models and a drastic 
loss of long-term hematopoietic stem cells (LT-HSCs). Using transplantation models we 
observed that neutropenic bone marrow progenitor cells cause a stoichiometric imbalance 
in the bone marrow and induces a latent and extrinsic negative influence on the bone marrow 
of the host leading to bone marrow failure. In conclusion, this thesis reveals transcriptional 
mechanisms to drive neutrophilic differentiation, how these mechanisms are deregulated 
in AML and how LT-HSC integrity depends on the stoichiometry of lineage differentiation in 
the bone marrow.

8.2   CEBPA regulation in hematopoiesis: The Enhancer-rich CEBPA locus 

8.2.1	 Regulation	inside	the	CEBPA TAD
The human CEBPA locus on chromosome 19 encompasses a 220kb topological 
associated domain, containing CEBPA and CEBPG  genes that belong to the CEBP 
family of leucine zipper transcription factors (Chapter	3 Fig.1a). CEBPA is located 70kb 
upstream from CEBPG, and the intergenic DNA in between the two genes constitutes 
many conserved DNA sequences between mouse and humans, one of which is marked 
by the histone acetylation mark H3K27ac, particularly in myeloid cells (Chapter	3 Fig.2). 
Downstream of CEBPA there is a stretch of more than 50kb of conserved potential 
regulatory elements marked by active histone acetylation, termed here as the myeloid 
regulatory hub (MRH) cluster of enhancers (Chapter	 7 Fig.1). The MRH cluster is active 
only in CEBPA expressing cell lines and tissues (Chapter	3 Fig.2) which exhibit a particular 
pattern of MRH cluster activity, depending on the tissue and cell type, that varies in (1) the 
number of enhancers active, and (2) which of the 8 enhancers are active. From 12 
different tissues investigated, only the neutrophils and monocytes have all 8 enhancers 
active, including the myeloid-specific enhancers located at +35kb and +42kb 
downstream of CEBPA.

The architectural protein CTCF insulates the CEBPA TAD borders and also 
compart-mentalizes the CEBPA 3’ site that form the CEBPA extrusion loop, from the CEBPG 
5’ site, i.e. the CEBPG extrusion loop. Loop extrusions are formed when two CTCF-bound 
DNA regions (motifs) are in a converging position and ready to move towards each other 
while extruding out a chromatin loop, which engages promoters, their genes and 
their corresponding enhancers[24]. 
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CTCF binding at the CEBPA TSS and at 1.5kb of the CEBPA promoter are most probably the 
sites that generate the two independent extrusions loops for CEBPA and CEBPG, 
suggesting that they are regulated independently. The CEBPA extrusion loop contains the 
CEBPA gene and the MRH cluster of enhancers. In this section, we focus on the CEBPA 
extrusion loop and discuss the role of the MRH cluster of enhancers on the transcriptional 
control of CEBPA in hematopoiesis.

8.2.2	 	The	+42kb	enhancer:	the	primary	switch	of	CEBPA	expression	and	the	
MRH	

cluster
In chapter	3 we thoroughly studied the function of the +42kb enhancer in mice and 
humans. The active histone-mark H3K27ac in HSPCs and the engagement of the +42kb 
enhancer with CEBPA in myeloid cells prompted us to study its role in hematopoiesis. We 
generated a knockout mouse model and found that the +42kb enhancer (+37kb enhancer 
in mice) acts as the primary responsive genetic element to initiate Cebpa expression in 
hematopoiesis, possibly already in fetal life. This particularly comes from a previous 
studies using LacZ reporter transgenic expression driven by this enhancer in mice, 
showing LacZ-activity in the dorsal aorta and in the fetal liver [25]. The +42kb enhancer acts 
autonomously, as previously stated, since germ line knockout of the enhancer shuts down 
the neutrophilic transcriptional program in early LSK progenitors by down-regulating 
Cebpa expression (Chapter 3 and 6). This concludes that the +42kb enhancer works 
independently from the rest of the MRH cluster of enhancers to initiate and regulate 
CEBPA expression, hence it functions as the primary genetic element for neutrophil 
lineage priming (Chapter	7 Fig.1). 
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Figure1. A schematic overview representing the hierarchical transcriptional activation of CEBPA in neutrophil 
differentiation. (1) Upstream transcription factors bind the accessible +42kb enhancer that acts as the primary 
responsive element to initiate CEBPA expression. (2) Transcriptional and translational expression of C/EBPa activates 
the gene expression program of neutrophilic differentiation. (3) The neutrophilic differentiation program activates 
the expression of neutrophilic associated factors that in turn (4) activates the whole MRH (myeloid regulatory hub) 
cluster of enhancers. (5) Nuclear C/EBPa dosage reaches threshold to (6) induce granulocytic differentiation.

8.2.3	 3’ CEBPA Intergenic region: 
The MRH cluster and its role in early hematopoiesis and adult myelopoiesis

Revealing the function of the MRH cluster of enhancers in hematopoiesis is our next 
milestone. The independent and autonomous function of the +42kb enhancer does not 
exclude or underestimate the importance of other enhancers within the MRH cluster during 
myeloid differentiation. We hypothesize that the other enhancers within the MRH cluster 
have (1) an additive and/or redundant function during neutrophilic differentiation, (2) an 
important role in other lineages of the myeloid fate in the bone marrow and (3) a role in the 
development of other CEBPA dependent organs.

Enhancers occur in clusters to fine-tune the transcriptional output of each and every 
enhancer in any given locus and increase the expression levels of the corresponding gene(s). 
Examples of genes exhibiting clusters of enhancers with additive function, termed additive 
enhancers, include the Indian Hedgehog (Ihh) gene locus during development[26].  The 
additive function of the 9 enhancers located upstream of the Ihh gene was demonstrated 
using a Sleeping Beauty cassette, with a transgenic LacZ gene inserted in the intron of 
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Ihh. The increase in numbers of active enhancers within the MRH cluster in the HSPC 
CD34+ cells to mature neutrophils correlates with the increase in Cebpa expression levels 
(Chapter 2 Fig.3a). We hypothesize that the number of active enhancers will increase with 
differentiation and that the enhancers at the MRH cluster constitute a combined additive 
function to increase Cebpa output. In addition, multiple active enhancers in a given locus 
might act as shadow enhancers to exert redundancy and protect from potential disease-
prone mutations at enhancer sequences [27-29]. Whether the MRH enhancers have 
redundant functions, requires further investigations that are discussed in the next section.

In addition to neutrophilic differentiation, any of these enhancers might also confer cell 
type specificity within the myeloid lineage. Recently it has been reported that an enhancer 
located at +39kb regulates CEBPA expression for basophilic differentiation in common 
myeloid progenitor cell populations [30]. Another enhancer located at +34kb of CEBPA 
is active in mature neutrophils and monocytes, but not in any other tissue. This implies 
that the enhancers within the MRH cluster have cell type specificity also between myeloid 
cells in the bone marrow. The function of the other enhancers located at +9kb, +15kb, 
+21kb, +29kb, +34kb, +42kb, +50kb and +55kb still needs to be further investigated. 
Interestingly, the +9kb enhancer is active in murine LSK populations and in human CD34+ 
HSPCs (Chapter	 2 Fig.2). This element draws a special interest for further 
investigations since its enrichment for H3K27ac histone mark always correlates with 
CEBPA expression, independent of cell type and tissue specificity. We believe that the 
+9kb enhancer is active in early fetal life since CEBPA expressing tissues are derived 
from all the three germ line layers, mesoderm, ectoderm and endoderm. In line with this, 
the +9kb enhancer contains motif clusters for TFs that are both cell lineage and tissue 
specific, as well as for TFs that are generic or ubiquitously expressed. . Based on previous 
findings and current hypothetical presumptions, the CEBPA locus has a major role in 
defining the epigenetic landscape of the myeloid fate, thus, a clear experimental setup is 
required to further investigate and reveal the function of these enhancers in 
hematopoiesis.
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Figure2. Cebpg expression levels expressed in RPKM normalized values from sorted bone marrows of murine 
wild type and +37kb enhancer deleted LSKs, CMPs and GMPs. Non-parametric Student T-test was used to test for 
statistical significance.
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8.2.4	 Experimental	approach:	Characterizing	the	MRH	cluster	in	Hematopoiesis 
All the enhancer sequences mentioned above are of human origin and are all conserved 
in the mouse genome. Given that low to no Cebpa expression levels acquire clonogenic 
potential with infinite re-plating of mur ine total bone marrow cel ls, we plan to setup an 
enhancer-knockout screening method using CRISPR/Cas9 genome editing and infinite re-
plating as a readout of Cebpa deregulation in murine bone marrow progenitors. We plan to 
start with single enhancer deletions and characterize immune-phenotypically the cells that 
undergo clonogenic potential and also investigate their chromatin status using H3K27ac and 
DNA/chromatin accessibility using DNase-seq or ATAC-seq. 

Enhancers that are selected from the screening method will be interrogated in vivo 
in mouse models. There are several ways and approaches to investigate their function 
in vivo. A reporter model to reveal their role as regulators of myelopoieisis during fetal 
development or in adult bone marrows can be generated by introducing either a LacZ or 
a fluorescent protein cassette 3’ of Cebpa using a sophisticated system such as a Sleeping 
Beauty transposon cassette that minimally interferes with surrounding gene regulation[31]. 
By generating this model, deletion of single or combinations of enhancers allows for testing 
whether these regulatory elements have an additive or redundant function. It will also allow 
us to study whether different individual enhancers have distinct roles in regulating Cebpa 
expression in different cell types of the myeloid lineage. Another possibility is to delete the 
enhancer in zygotes to generate a germ-line deletion model. However, this might impose 
problems on the viability of the mice since different enhancers in the MRH cluster might 
also regulate Cebpa in other tissues[32]. For instance, a germ line knockout of the +9kb 
potential enhancer (active in all CEBPA expressing tissues), hypothetically, should give a 
similar phenotype as the germ-line Cebpa gene knockout. Thus, to investigate its function, 
a conditional enhancer knockout model  is preferred over a germ-line deletion model. 

These approaches altogether will unveil the function of the MRH cluster of enhancers 
in CEBPA expressing myeloid cell types. These studies may provide a paradigm to 
understand how other similarly-structured gene loci that have strong implications 
in development, differentiation and disease, are regulated in the genome.

8.3 Transcriptional control of CEBPA and CEBPG
8.3.1 Mechanistic insights in CEBPG regulation:	Transcriptional	control	in	trans?
The CEBP family members, including the single exon genes CEBPA, CEBPB, CEBPD and CEBPE 
are mostly known for their differentiation mediated potential in the bone marrow. Less is 
known about CEBPG, which is located 70kb upstream of CEBPA. In the discussion section of 
Chapter	3, we discuss that, unlike previously reported in Alberich-Jorda et al, the absence of 
Cebpa expression by Cebpa-enhancer deletion, does not influence Cebpg expression levels. 
Alberich-Jorda et al show that CEBPA and CEBPG in a human AML subset exhibit an inverse 
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correlation in expression ((See Chapter 3). DNA methylation data in combination with gene 
expression profiling shows that in a subset of AML patients, the CEBPA promoter exhibits 
DNA methylation with low/no CEBPA expression levels, whereas the CEBPG promoter is 
free of methylation and exhibits strongly increased CEBPG levels when compared to other 
AMLs. Such findings led to the hypothesis that CEBPA negatively influences the 
transcription of CEBPG, and that CEBPA silencing leads to high CEBPG expression levels. C/
EBPα binds to the promoter of Cebpg in both mouse and human cell lines and negatively 
influences the E2F transcription factor activity, known for its transcriptional activating 
potential of CEBPG. Furthermore, Cebpa and Cebpg expression in mouse bone marrow cells 
follow an inverse pattern of expression, indicating that both genes are inversely 
regulated. In the Cebpa knockout mouse model, the  lineage-ve c-kit+ve Sca-1+ve fraction, the 
population of bone marrow cells where stem and progenitor cells reside, Cebpg is 
significantly increased. Reintroduction of a Cebpa cDNA into the Cebpa knock out LSK 
cells resulted in partial repression of Cebpg mRNA levels. In addition, Cebpg seems to 
have negative implications on emergency granulopoiesis, which is overtaken by CEBPb, 
since knockdown of CEBPG shows a release from the differentiation block. 

8.3.2 CTCF	 may	 play	 a	 major	 role	 in	 CEBPA	 and	 CEBPG gene expression
From the study by Alberich-Jorda et al., it was concluded that the CEBPα protein is 
responsible for the down modulation of Cebpg by binding to the promoter and repressing 
its expression Cebpg transcription in trans. However, our studies with in vivo +37kb 
enhancer deleted mouse model and the +42kb enhancer (human homolog of the murine 
+37kb enhancer) deleted THP-1 cells suggest a different mechanism. We observed that loss 
or decrease of Cebpa does not affect Cebpg expression. (Chapter 2). In the murine model, 
upon enhancer deletion, Cebpa levels by RNA-seq were significantly decreased in different 
immunophenotypically-sorted bone marrow populations. These populations include the 
lineage-ve c-kit+ve Sca-1+ve (LSK) hematopoietic stem and progenitor population the common 
myeloid progenitor (CMP) and the granulocytic-monocytic progenitor (GMP) cell 
populations. However, despite the loss of Cebpa expression, we did not see any effects on 
the expression of Cebpg in LSKs, CMPs or GMPs, which contradicts the findings observed in 
the Cebpa knockout mouse model (Chapter	2	Fig.7). In addition, knockdown of Cebpa in 
lineage negative bone marrow cells and deletion of the 42kb enhancer in THP-1 cells did 
not show any changes in Cebpg/CEBPG expression, respectively.

Generating gene knockouts in mouse models poses challenges, given that deletion 
of critical DNA sequences (in addition to the gene under investigation) that belong to 
regulatory elements or DNA motifs recognized by nuclear proteins might have detrimental 
consequences on the transcriptional control of nearby genes. The TAD domain 
that contains Cebpa and Cebpg has defined insulated boarders, bound by the TF CTCF  
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(Chapter	 3 Fig.1). Within the TAD itself, there are conserved sites enriched for CTCF 
binding, which are close to the Cebpa gene. These include the Cebpa TSS, Cebpa -1.8kb and 
Cebpa -9kb. Excision of the Cebpa gene as reported in the study by Zhang et al[32], caused 
deletion of additional nearby sequences upstream of Cebpa, including the DNA binding sites 
for CTCF and perhaps for other potential unknown factors responsible for the chromatin 
folding and looping. This raises questions about the underlying mechanism that increase 
Cebpg expression levels upon the excision of Cebpa. We hypothesize that the CEBPA TAD is 
sub-divided into two loops: 5’ CEBPG extrusion loop contains the DNA sequences located 
upstream of the Cebpa promoter to Cebpg, and a CEBPA loop extrusion containing DNA 
sequences from the Cebpa promoter to the promoter of Slc7a10 gene including MRH cluster 
of enhancers located 3’ of Cebpa. Studies have shown that deletion of CTCF sites within a 
TAD, but not at borders, has detrimental effects on the expression of genes within the TAD. 
We hypothesize that upon Cebpa excision, deleted CTCF sequences located upstream of 
Cebpa form a new single loop that brings at close proximity Cebpg with the MRH cluster, 
leading to a steady increase in Cebpg expression levels (Chapter	7	Fig.3). 

A subset of human AML patients showed elevated levels of CEBPG, associated with DNA 
hyper-methylation at the CEBPA gene, its promoter, and upstream sequences including the 
CTCF binding sites. CTCF was the first DNA binding factor to be recognized as DNA methylation 
sensitive i.e. it doesn’t bind to methylated DNA[33]. Abnormal DNA methylation patterns 
caused by mutations in the de-methylation pathway, such as in genes encoding enzymes 
IDH1 and IDH2, alter gene expression programs via loss of CTCF binding and decreased 
insulation of neighboring topological associated domains (TADs) [34]. Such a mechanism 
might also explain the increase in CEBPG levels in the CEBPAsilenced AML subgroup. Our 
unpublished data of CEBPAsilenced patients and other AMLs show that by applying enhanced 
reduced representation bisulfite sequencing (eRRBS), the CEBPA ge ne and it s pr omoter 
are hyper-methylated[35]. whereas the +42kb enhancer is hypo-methylated in all AMLs 
(Chapter	7	Fig.3). Putting these findings into perspective, (1) DNA methylation occurring at 
the CEBPA promoter and its TSS inhibits the CTCF binding to DNA, (2) loss of CTCF binding 
reduces border strength and insulation between CEBPG and CEBPA extrusions loops, (3) 
decreased insulation leads to exposure of CEBPG to the MRH cluster of enhancers, (4) 
CEBPG transcription becomes under the control of the +42kb enhancer. 

CEBPG deregulation in AML requires a deeper understanding based on further 
experimental investigations. To mimic the DNA methylation effect of the CTCF binding sites 
located upstream of CEBPA, fusing the methyl transferase domain of DNMT enzymes to 
nuclease-deficient Cas9 (dCas9) and target the fusion protein by gRNAs to the CTCF binding 
sites upstream of CEBPA, would methylate cytosines in the CTCF motifs and prevents its 
DNA binding. This approach would mimic, at least in part, the observed DNA methylation 
findings in the CEBPAsilenced AML subset of patients. Alternatively, the CTCF motifs can be 
deleted or mutated using gRNAs flanking the CTCF binding sites to cut and replace the 
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sequence with a mutant-corrected donor template. This experimental approach could be 
conducted in human myeloid cell lines; one expressing CEBPG only (K562) and another one 
expressing CEBPG and CEBPA (THP-1, U937, HL-60). Next, to investigate whether by altering 
the CTCF binding site reduces the insulation between the CEBPA and the CEBPG loop, and 
perhaps increases the interaction between the MRH cluster of enhancers with CEBPG, 
applying 4C-seq and capture HI-C will (1) capture novel potential interactions or (2) detect 
an increase in the interaction frequency between enhancers and promoters that ultimately 
becomes one whole loop. 

8.3.3	 Yet so close but distinctively regulated: Different regulatory mechanisms 
within the same TAD
Based on the outcome of these experiments, it may be concluded that CEBPA and CEBPG 
are regulated separately and independently. A possible reason to explain this assumption is 
because CEBPA and CEBPG encode TFs that have a different function in different biological 
pathways. CEBPG is expressed in all tissues thus, acting more like a housekeeping gene that is 
constitutively activated (Unpublished observations). On the other hand, CEBPA is expressed 
in specific tissues and at specific stages of differentiation. CEBPA requires regulatory mecha-
nisms that modulate its expression in a spatiotemporal manner. This means that the two 
genes within the same TAD require a different transcriptional regulatory mechanism, 
hence the formation of two independent and separate extrusion loops (Chapter 7 Fig.3).   
Ubiquitous genes or housekeeping genes, in general, do not engage with enhancers for their 
transcriptional control[36]. Instead, their promoters contain TF binding motifs that can be 
recognized, bound and activated in any cell type and the activation is strong enough to drive 
enough to drive constitutive expression of the corresponding house keeping gene{36].  

In conclusion, Jorda et al studied the regulatory mechanisms occurring in trans between 
CEBPA and CEBPG within the CEBPA TAD. In this section we hereby discussed other potential 
mechanisms that go beyond the CEBPA-CEBPG regulation in trans by protein to DNA 
interaction. We propose that regulation between the two genes occur at a higher ordinary 
structure of the genome. We hypothesize that loop anchors set by CTCF at borders and at 
the CEBPA promoter, divides the CEBPA TAD into two separate loop extrusions, and allow 
CEBPA to be transcriptionally regulated by its 3’ enhancers. Whereas in AML, CTCF anchors 
are disturbed and the CEBPA and CEBPG extrusion loops become one single loop and 
deregulate CEBPG levels, which might contribute to AML. 
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independent from any interaction with Cebpg. Cebpa knockout model (grey) showing the deletion of Cebpa gene 
together with CTCF motifs creates a new interaction between Cebpg and the enhancers, leading to increased Cebpg 
expression levels. In the +37kb enhancer model, the +37kb enhancer is deleted, Cebpa expression is lost, but not 
Cebpg. (b) Human CEBPA and its 3’ enhancers engage in interaction independent from any interaction with CEBPG. 
DNA methylation at CEBPA promoter and at CTCF sites, disturb the insulation between CEBPA and CEBPG leading to 
ectopic interaction of CEBPA-enhancers with CEBPG resulting in an increase in CEBPG expression levels. 
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Figure4. A schematic representing the Cebpa (3’) and Cebpg (5’) extrusion loops based on CTCF binding at the 
Cebpa promoter. The two extrusions loops show that both genes are regulated independent from each other. In 
the Cebpa knockout model, CTCF sites at the Cebpa promoter are disrupted which further disrupts the two 
extrusion loops and create a new extrusion loop that disturbs Cebpg expression.

8.4  The role of the CEBPA TAD in disease.
In Chapter 5 and Chapter 6 we studied the role of the CEBPA TAD in disease. Given the 
tumor suppressor function of CEBPA, we studied how oncogenic mechanisms in AML 
target the transcriptional regulatory network of CEBPA to halt the neutrophil 
differentiation program. We show that onco-proteins, such as AML1-ETO, are 
addicted to +42kb enhancer to downregulate CEBPA expression. Surprisingly, the +42kb 
enhancer and the rest of the CEBPA TAD is not a target for DNA mutations, except in one 
patient, which harbours a bi-allelic deletion of CEBPA in AML. The findings reported in 
this thesis will be discussed thoroughly in the next sections. 

8.4.1	 Hijacking	tumor-supressor enhancers:	predisposing	bone	marrow	
progenitors	to	leukemia
Oncoproteins use diverse mechanisms to deregulate transcription of target genes 
involved in cell cycle regulation, DNA repair and differentiation pathways. Perturbation 
in any of these pathways compromise normal hematopoiesis and triggers the onset of 
leukemia. Oncoproteins are commonly generated either by chromosomal 
abnormalities in coding sequences (translocations, inversions and deletions), by point 
mutations in coding sequences, or by mutations in regulatory elements that lead to their 
ectopic activation[37-43]. One of 
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the most studied mutations in AML is the chromosomal translocation t(8;21) which generates 
the AML1-ETO fusion oncoprotein accompanied by very low expression levels of CEBPA[44]. 
The oncogenic function of AML1-ETO in AML was studied extensively for the last two 
decades, however mechanisms of how this oncoprotein deregulate the neutrophilic gene 
expression program is still poorly understood. Attenuation of AML1-ETO in the Kasumi-1 cell 
line by siRNA activates a gene expression program driven by C/EBPa, indicating that CEBPA 
is an early target of AML1-ETO to halt the neutrophilic differentiation program[45, 46]. 

The oncogenic domains of the AML1-ETO protein were previously studied in AML [47-
49]. The N-terminal part of AML1-ETO binds DNA motif sequences via AML1 (also known as 
RUNX1), whereas the C-terminal part of the oncoprotein contains the 4-nervy homologous 
(NRH1-4) domains of ETO and recruits different transcriptional co-regulators including 
transcriptional repressors[50-53]. The scope of our study was to reveal how AML1-ETO 
down-regulates CEBPA expression. Transcriptional regulation involves the combination of 
different transcriptional agents that act together to activate or repress genes via a series 
of events. Combined studies suggest that, for transcription to occur, a gene requires to 
be engaged into an active chromatin loop together with regulatory elements located in a 
topological associated domain and form complexes of DNA, RNA and protein [7, 54, 55].

Applying a set of experiments using AE-models as well as AE-patient samples we 
defined four unique events occurring in the CEBPA-TAD. Such events could be discriminated 
according to  how they happen sequentially or independently upon AE expression: 1) 
loss of CEBPA expression; , 2) physical binding of the AML1-ETO oncoprotein in the 
CEBPA locus, predominantly to the +42kb enhancer; 3) histone deacetylation of H3K9 and 
H3K27 at the MRH enhancers; 4) and disengagement of chromatin interactions between 
CEBPA and its enhancers. 

We asked whether these events are (1) AML1-ETO dependent and (2) whether they 
occur sequentially or simultaneously. We used inducible retroviral overexpression and 
induced lentiviral shRNA knockdown systems for AML1-ETO, in U937(CEBPA+ve; AML1-ETO-

ve) and Kasumi-1 (CEBPAlow; AML1-ETOpos) cell lines, respectively. Our hypothesis states that 
(1) binding of AML1-ETO to the enhancer recruits transcriptional repressors by the ETO
sequentially leading to reversal of the active chromatin state of the locus, and  disruption of
the looping between CEBPA and its enhancers, ultimately leading to loss of CEBPA expression 
(Chapter	7	Fig.5).  The findings in our models overlapped with observations in the AML1-
ETO patient specimens.

An additional approach to address the question whether binding of AML1-ETO to the 
CEBPA locus is the main driver of leukemic transformation, is to tether ETO or ETO-bound 
co-repressors to the CEBPA locus. Tethering a protein of interest to a specific locus allows 
the investigation for rapid and early transcriptional responses. The tethering methodologies 
developed so far include TALENs and CRISPR/Cas9 approaches[23, 56-58]. To reveal 
whether the binding to the enhancer and deacetylation are the two initial events that lead 
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to reduced CEBPA expression levels, we propose to use CRISPR/Cas9 and fuse the catalytic 
domain of a transcriptional repressor to dCas9 (dead Cas9 i.e. binds but doesn’t cleave the 
DNA) and tether it to the +42kb enhancer using guide RNAs with sequences complementary 
to the enhancer[59]. Fusing the NHR domains of ETO to dCas9 would potentially mimic the 
AML1-ETO repressive function on genomic target sites. An additional approach is to fuse the 
catalytic domains of HDACs to dCas9, which are part of the AML1-ETO repressing complex. 
Histone de-acetylation by dCas9-HDACs showed adequate repression on different target 
genes [60]. Following the introduction of fused dCas9 proteins in the model of interest, 
CEBPA expression will be monitored followed by ChIP-seq experiments to test for tethering 
of dCas9 to the locus and the chromatin status of the enhancer. (Chapter 7 Fig.5).

The next step will be to study whether the loss of the chromatin interaction between 
CEBPA and the enhancer is a consequence of enhancer deacetylation or whether it is 
an independent event. Methods that can be applied to detect changes in chromatin 
interactions include 4C-seq and capture-HI-C[19, 61]. Changes in chromatin interactions 
can explain whether deacetylated enhancers disrupt looping with CEBPA. Deacetylation 
of lysine residues deactivates functional domains of non-histone proteins[48]. Therefore, 
one other possibility is that AML1-ETO deacetylates and deactivate unknown potential 
architectural proteins bound to the enhancer that form loop complexes with the CEBPA 
gene. An important statement to highlight here is that 20% of AML1-ETO patients have 
mutations in genes that encode for the genome architectural protein complex of cohesion. 
Together with CTCF, cohesion forms ring structures and secure chromatin loops. Loss of 
function in cohesion is associated with loss of chromatin loop formation and reorganization 
of whole TADs[62]. Thus, such mutated genes may cooperate with the oncogenic function 
of AML1-ETO to deregulate downstream target genes.

8.4.2	 Genomic instability causing TAD deletions and CEBPA null mutations
Bi-allelic mutations in the CEBPA coding sequence account for 10% of AML patients. Screening 
for CEBPA mutations has become a part of the diagnostic service since these mutations carry 
clinical significance and provide prognostic knowledge on whether to devise bone marrow 
transplantations for leukemic patients[63]. Given that the regulatory regions in the non-
coding genome of the CEBPA locus might be a target for mutations as well, DNA sequencing 
was conducted in AML patients. It was hypothesized that point mutations in motif binding 
site of transcription factors within enhancer sequences or other mutations such as deletions 
may lead to low affinity or loss of TF binding and interfering with transcriptional activation. 
Attenuation of enhancer activity and transcriptional output would lead to the low CEBPA 
expression levels. Thus, a specific AML subgroup with relative low expression levels was 
selected for investigation. 

Of the 200 AML cases sequenced, only one patient presented with a mutation in the 
whole TAD. Nonetheless, without excluding the importance of single nucleotide variants 
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(SNVs) in relationship to transcriptional regulation, enhancers harbored SNVs without any 
evidence of DNA mutations occurring in the CEBPA locus. This one patient harbored a bi-
allelic deletion of CEBPA and CEBPG. One allele had a gross deletion of the long arm of 
chromosome 19 whereas the other allele contained a deletion of the whole CEBPA 
TAD, with deletion breakpoints occurring at or close to CTCF sites. Other regions in the 
genome exhibited deletions, indicating that gross genomic instability that highly 
predisposed the patient for these deletions. The patient’s history showed that the AML 
was secondary related to therapy of a primary tumor that occurred in the small intestine.

It is of interest to note that this particular patient was previously recognized as an AML 
case with a unique mixed myeloid/lymphoid phenotype without CEBPA expression [35]. 
These cases were designated CEBPA-silenced leukemias. Almost all patients in this AML 
subgroup were reported to have full CpG methylation of the CEBPA gene, explaining the 
absence of CEBPA transcripts in the leukemia cells by epigenetic silencing. However, 
patient 7120 exhibited loss of both alleles at the DNA level and could not be investigated. 
Since patients with CEBPA silencing by methylation express a very comparable mixed 
myeloid/T-lymphoid gene expression signature, frequently carry mutations in NOTCH1, we 
argue that further analysis of bi-phenotypic leukemias should be screened for 
abnormalities in the CEBPA locus[35]. Furthermore, patients with chromosome 19q 
deletions should be included as well in such an analysis, as well as AML patients with 
genomic instability resulting in very complex karyotypes and frequent chromosomal 
deletions. 

Another finding that was reported separately is that the CEBPAsilenced leukemias had 
a very strong CpG methylation signature, with many genes silenced by CpG 
methylation. A question that has remained unanswered is whether CEBPA is just one out 
of many genes being silenced by methylation, or whether silencing of CEBPA leads to 
the loss of CEBPA protein binding to its many target genes and whether this consequently 
leads to methylation and silencing of target genes. In the latter case, the patient with 
the deleted CEBPA gene (7120) should present exhibit a similar methylation signature 
as the other bi-phenotypic CEBPA-methylated cases. 

8.5 In vivo Cebpa-Enhancer-deletion and bone marrow failure
The role of Cebpa and the +37kb enhancer in murine neutrophilic differentiation has 
been established in previous studies[32, 64-66]. Germ-line knockout of Cebpa impairs 
neutrophilic differentiation and also compromises organogenesis, majorly the liver, 
adipose system, lungs in feta life. Deletion of the +37kb enhancer Given its myeloid 
specificity, the +37kb enhancer deletion jeopardizes the development of neutrophils only 
(Chapter	3). 
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        Deletion of the +37kb enhancer led to the following observations: (1) inactivation of 
the neutrophilic differentiation program occurs in HSPCs and causes severe neutropenia 
in bone marrow and peripheral blood; (2) Prolonged neutropenia negatively influence 
LT-HSCs and cause bone marrow failure. The experiments carried out to reach these 
conclusions were conducted in two separate mouse models; a germ-line deletion of the 
+37kb enhancer mouse model and in a transplantation model (enhancer deleted bone 
marrow cells transplanted in sub-lethal irradiated mice). Reduction in LT-HSC numbers 
raised questions whether it is caused by (1) lack of production of Cebpa-expressing LT-HSCs 
due to germ-line +37kb enhancer deletion, or (2) extrinsic events caused by neutropenia.
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Figure5. A schematic representing (a) the binding of TFs known to transactivate Cebpa expression via architectural 
proteins that promote DNA looping together with CTCF. (b) The presence of AML1-ETO binding to the enhancer 
recruits co-repressor complexes and either displaces or deactivates the TF complex required to activate CEBPA 
expression. (c) Modeling of this mechanism by using dCas9-ETO tethering system.
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8.5.1	 LT-HSCs	do	not	express	Cebpa :	Insights	from	single	cell	RNA-sequencing
To ask whether the +37kb enhancer-deletion is intrinsically related to the loss of LT-HSCs, 
we applied single cell RNA sequencing. From all single LT-HSCs investigated, we found that 
LT-HSCs do not express Cebpa, contradicting conclusions reported previously[67]. I n this 
previous report [67], Cebpa was investigated from a heterogeneous pool of hematopoietic 
stem progenitor cells. Measuring mRNA levels from a bulk population can impose several 
problems caused by bone marrow heterogeneity. The application o f s ingle-cell RNA 
sequencing dissects cell populations based on their expression program and distinguishes 
between different populations that share a si milar im mune-phenotype. It  al so offers a 
plausible identification of transcriptional networks to characterize single cell-lineages at a 
higher resolution than immune-phenotyping[68, 69].

By dissecting bone marrow heterogeneity into wild type single cells we showed that 
the integrity of LT-HSCs is not intrinsically dependent on Cebpa activity. Losing Cebpa 
expression deactivates the neutrophilic differentiation program, which leads to an 
unidentified mechanism that compromises the integrity of the LT-HSC population. Like 
Cebpa, Spi1 (PU.1) has also been considered to be a stem cell factor, however single-
cell studies showed that LT-HSCs do not harbor PU.1 expression and any influence on LT-
HSC number and function appears extrinsic but not cell autonomous[70,71].

8.5.2	 Upregulation	 of	 genes	 in	 enhancer-deleted	 LSKs:	 Bias	 towards	 specific	
cell	populations	upon	loss	of	the	neutrophilic	lineage?
The changes that we observe in Tcf7, Bcl11b and Irf8 genes by conventional RNA-seq 
conducted on bulk +37kbHOM LSKs, defines changes in cell population numbers. The 
increase in expression of each of these factors is most probably representing a 
particular cell lineage or lineages that becomes predominant in the bone marrow upon 
loss of the neutrophilic differentiation line. Loss of the neutrophilic lineage causes a 
stoichiometric imbalance in the myeloid fate, which alters the numbers of myeloid fate 
progenitors (increase in IRF8 expression levels)[72-74] and possibly, influencing also 
lymphoid fate progenitors (increase in TCF7 and BCL11b)[75, 76]. 

8.5.3	 Aberrant	extrinsic	mechanisms	influence	normal	hematopoiesis	of	the	
host:	The	role	of	the	niche.

A two-way hypothesis is addressed in Chapter 6 to explain the LT-HSC phenotype. 
We previously showed that enhancer deleted bone marrow cells are blocked in 
neutrophilic differentiation and have clonogenic capacity in vitro (Chapter	 3). These 
pre-leukemic characteristics are reflected in the abnormal gene expression program of the 
LSKs mentioned in previous sections. Although at low chimerism, prolonged circulation of 
transplanted pre-leukemic bone marrow cells might explain the latent negative effect on 
the hematopoiesis of the host. 

Chapter 7

THESIS_Roberto_Avellino.indd   192 07-05-18   10:18



193

      It is becoming more clear how pre-malignant and malignant cells influence the 
bone marrow to suppress normal hematopoiesis as well as the function of external 
non-hematopoietic organs [77-79]. The communication between hematopoietic stem and 
progenitor cells and the bone marrow microenvironment has been the focus of many 
scientific studies for many decades. It is now well established that HSCs are regulated 
by non-hematopoietic bone marrow stromal cells including osteoblasts, adipocytes, 
endothelial cells and mesenchymal stem cells [80-84]. These cellular compartments make 
up the environmental niche of bone and vascular origins. A current dogma states that an 
abnormal microenvironment induces genotoxic stress onto HSPCs leading to the onset 
of clonal hematological malignancies, which is the underlying mechanism for many 
bone marrow failure disorders. In fact, as a preliminary experiment, we studied the 
distribution of these distinct bone marrow stromal cell types in three mice transplanted 
with +37kb CEBPA-enhancer deleted marrow and three wild type controls, which did not 
develop a bone marrow failure yet (the +37kbnormal/intermediate homozygous mice). Compared 
to controls, the +37kb homozygous mice showed abnormal absolute numbers of 
osteoblasts and endothelial cells (Supplementary Figure 6 in Chapter	6).  A larger mouse 
cohort would suffice to investigate whether these findings are associated and 
complementary to the bone marrow failure phenotype.

Our findings suggest that bone marrow cell progenitors defective in neutrophilic 
differentiation induce hematopoietic deficiency on the host. Several examples of extrinsic 
mechanisms exerted on the bone marrow environment leading to differentiation 
defects have been reported. Leukemic cells secrete transcripts of miRNAs 
encapsulated in exosomes to silence critical stem cell factors such as c-MYB in the 
wild-type environment and compromise normal hematopoiesis [78, 85, 86]. 
Transplantation of leukemic HL-60 cells in a normal host suppress the normal 
hematopoietic environment providing a growth advantage to the leukemic HL-60 cells 
[78]. Immune suppression of the host contributes to immune evasion by the tumor cells, 
which allows them to grow further against minimized suppression. Such phenomenon is 
contained within the bone marrow in leukemogenesis, however, abnormal progenitors of 
the myeloid-erythroid lineage defective in BRAF signaling have been demonstrated to 
bypass the blood brain barrier and migrate into the central nervous system. There it 
disturbs neuronal function and contribute to neurodegenerative diseases[87]. All these 
examples underline the possibility of abnormal HSPCs and their progeny circulating in 
the bone marrow and other organs, which can negatively influence their niche and alter 
or suppress organ function. 7
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ENGLISH SUMMARY

The second chapter of this thesis comprises a review that discusses novel concepts about 
the role of CEBPA in normal hematopoiesis and in disease. It focuses mainly on the many 
layers of transcriptional regulation of CEBPA, with particular interest on the function of the 
+42kb CEBPA enhancer in hematopoiesis. Hypothetical insights were discussed about the
enhancer role in maintaining CEBPA levels at a steady-state and protect the bone marrow
from undergoing HSC consumption, exhaustion and later bone marrow failure. Moreover, the
+42kb enhancer can potentially be targeted by oncogenic mechanisms to minimize CEBPA
levels down to a threshold that it’s insufficient to drive the myeloid differentiation program
and predispose myeloid committed progenitors to acute myeloid leukemia. In addition,
adequate CEBPA expression levels are also required for the initiation of AML, indicating that
CEBPA expression levels require tight regulatory mechanisms in bone marrow progenitors
throughout the lifetime of an organism to protect from disease predisposition and initiation.

The third chapter describes thoroughly the non-coding region of the CEBPA locus in humans 
and mice to identify potential CEBPA enhancers in myelopoiesis. Combining different 
technical-approaches including active histone modifications, chromosome conformation 
capture and genome editing technology (CRISPR/Cas9 approach) revealed that a primary 
responsive enhancer in the Cebpa locus, located at +42kb and +37kb in humans and mice, 
respectively, activates Cebpa and the neutrophilic gene expression program. This enhancer 
engages with CEBPA in myeloid cells only, suggesting tissue specificity. Germ-line knockout 
of the enhancer in murine models compromises Cebpa expression and halts the neutrophilic 
differentiation program causing neutropenia. In addition, germ line enhancer knockout 
influences the HSC population, which leaves an open-end observation that requires further 
investigations. In conclusion, this study characterized an important CEBPA enhancer that has 
crucial implications in neutrophilic development and HSC integrity.

The fourth and the fifth chapter focus on the role of the non-coding regulatory region of 
the CEBPA locus in AML. A substantial number of AML patients exhibit low CEBPA expression 
levels compared to other AMLs with relatively higher CEBPA levels . Within these subsets 
are AML patient subsets with known hematological abnormalities such as the fusion 
oncoprotein AML1-ETO, ectopic high EVI1, FLT3-ITD, DNMT3, and a subset of AMLs with 
no recurrent abnormalities. For the latter group, the link to low CEBPA expression levels 
was hypothesized to occur via mutations in the non-coding genome of the CEBPA locus. 
However, screening 200 AML patients including, did not find any recurrent point mutations 
or chromosomal abnormalities, except for one patient that harbored a bi-allelic deletion 
of CEBPA. These findings lead to conclusions that the CEBPA locus in AML is not targeted 
by mutations but potentially deregulated at the chromatin level. The CEBPA locus was 
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investigated under the influence of AML1-ETO, the most common recurrent abnormality in 
AMLs with low CEBPA expression levels. AML1-ETO binds to the CEBPA locus via the +42kb 
enhancer, reverses its active chromatin state, disengage enhancer-gene interactions, down-
regulate CEBPA expression and predispose bone marrow progenitors for the onset of acute 
myeloid leukemia.

In the sixth chapter, we tackled the unanswered question from Chapter three about the 
drop in HSC numbers in Cebpa enhancer-deleted and neutropenic mice. The main question 
addressed is two-way; (1) whether deleting the enhancer leads to the loss of the HSC sub-
population that express Cebpa and shuts down the neutrophil differentiation program at 
the HSC stage, thus explained as a cell-autonomous effect; or (2) the neutropenia negatively 
influences the HSCs as an extrinsic effect in the absence of Cebpa. Using single-cell RNA-
seq in combination with bulk RNA-seq in hematopoietic stem and progenitor cells, the 
most primitive HSC population does not express Cebpa, thus excluding that enhancer 
deletion influence HSCs in a cell autonomous way. The second hypothesis was tested using 
a transplantation model. Transplanted enhancer-deleted (neutropenic) bone marrow 
cells induced HSC loss and latent bone marrow failure in recipient mice, suggesting that 
neutropenic bone marrow cells compromise hematopoiesis by using, undefined, extrinsic 
mechanisms.

In conclusion, this thesis reveals new mechanisms of how a Cebpa enhancer acts as a 
primary switch to control neutrophilic differentiation and maintain bone marrow integrity. 
This enhancer is also a target for oncogenic deregulation of CEBPA expression in human 
AML, thus studying its function serves as a paradigm for epigenetic therapeutic targeting in 
the field of leukemia. 
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203Dutch summary

DUTCH SUMMARY

In dit proefschrift wordt de transcriptionele controle van CEBPA genexpressie tijdens 
hematopoëse bij muis en mens bestudeerd. Transcriptionele controle van genexpressie 
kent vele aspecten: dit proefschrift focust op de ontdekking van de rol van enhancers, die 
verantwoordelijk zijn voor de transcriptionele controle van CEBPA genexpressie in gezond 
en ziek beenmerg. 

Hoofdstuk twee is een review, die nieuwe concepten over de rol van CEBPA in normale 
hematopoëse en bij ziekte bediscussieert. De focus van de review ligt op de nieuwe aspecten 
van transcriptieregulatie van CEBPA en met name op de functie van de +42kb CEBPA 
enhancer in hematopoëse. Hypotheses over de rol van de enhancer bij het onderhouden 
van de normale CEBPA expressieniveaus en over het beschermen van het beenmerg tegen 
consumptie van bloedstamcellen (HSCs), uitputting en uiteindelijk beenmergfalen worden 
hierin besproken. Verder wordt beschreven hoe de +42kb enhancer mogelijk kan worden 
gebruikt door oncogene mechanismen om de CEBPA expressie te minimaliseren, zodat de 
expressie onder de drempelwaarde ligt om de myeloïde differentiatie in gang te zetten. 
Hierdoor worden de myeloïde voorlopercellen vatbaar om acute myeloïde leukemie (AML) 
te ontwikkelen. Tevens is een minimaal CEBPA expressieniveau nodig voor de initiatie van 
AML, wat erop duidt dat de CEBPA expressie strikt gereguleerd moet worden in beenmerg 
voorlopercellen gedurende de gehele levensduur van een organisme om deze te beschermen 
tegen ziekte-aanleg en -initiatie.

In hoofdstuk drie wordt het niet-coderende gebied van de CEBPA locus in mens en muis 
in kaart gebracht om de mogelijke CEBPA enhancers in myelopoeise te identificeren. Door 
de combinatie van verschillende technieken, zoals analyse van actieve histon modificaties, 
chromosome capture en genoom-editing technologieën (CRISPR/Cas9), werd een primaire 
responsieve enhancer in het Cebpa locus geïdentificeerd, op +42kb bij de mens en +37kb bij 
muizen. Deze activeert Cebpa en het neutrofiele genexpressieprogramma. Deze enhancer 
werkt alleen in myeoloïde cellen, wat een weefselspecifieke rol suggereert. Een knock-
out van de enhancer in de germ-line in muizenmodellen vermindert Cebpa expressie en 
blokkeert het neutrofiele differentiatie programma, waardoor er neutropenie ontstaat. 
Verder beïnvloedt de germ-line enhancer knock-out de HSC-populatie, De mechanismen 
hierachter zijn onduidelijk en worden verder bediscusieerd in Hoofdstuk 6. Samenvattend: 
deze studie beschrijft een belangrijke CEBPA enhancer met een essentiële rol voor neutrofiele 
ontwikkeling en HSC-integriteit.

Hoofdstuk vier en vijf focussen op de rol van de niet-coderende regulerende regio van de 
CEBPA-locus in AML. Een substantieel deel van de patiënten met AML heeft een relatief lage 
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CEBPA-expressie. In deze groep bevinden zich AML-patiënten met bekende hematologische 
afwijkingen, zoals het fusie-eiwit AML-ETO, abnormaal hoge EVI1, FLT3-ITD, DNMT3, maar 
ook een subgroep zonder bekende afwijkingen. Voor de laatste groep was de hypothese 
dat het lage CEBPA expressieniveau door mutaties in het niet-coderende genoom van 
het CEBPA locus zou kunnen worden veroorzaakt. Een screening van 200 AML-patiënten, 
leverde geen veelvoorkomende puntmutaties of chromosomale afwijkingen op, met de 
uitzondering van één patiënt waarbij een bi-allelische deletie van het CEBPA-locus werd 
gedetecteerd. Deze bevindingen leiden tot de conclusie dat het CEBPA- locus in AML geen 
doelwit is voor mutaties, maar mogelijk wordt gedereguleerd op het niveau van chromatine. 
Verder werd de invloed van AML1-ETO, de meest voorkomende afwijking bij AML met lage 
CEBPA-expressie, bestudeerd. AML1-ETO bindt aan het CEBPA locus via de +42k enhancer, 
maakt de actieve chromatine status ongedaan, inhibeert enhancer-gen interacties, zorgt 
voor lagere CEBPA-expressie en maakt de voorlopercellen in het beenmerg vatbaar voor de 
ontwikkeling van acute myeloïde leukemie.

In hoofdstuk zes wordt de nog open vraag uit hoofdstuk drie beantwoord, over de 
vermindering van HSC aantallen in Cebpa enhancer-gedeleteerde en neutropene muizen. 
De hoofdvraag leidt in twee richtingen: Ten eerste, is de deletie van de enhancer intrinsiek 
verantwoordelijk voor de vermindering van de HSC subpopulatie? In dit geval gaan we er 
van uit dat HSCs Cebpa tot expressie brengen en dat de neutrofiele differentiatie al wordt 
geblokkeerd in de HSCs. Een cel-autonoom effect zou dan het verlies van de aantallen HSCs 
verklaren.  Of wordt, ten tweede, de HSC populatie negatief beïnvloed een extrinsiek effect 
als gevolg van de neutropenie veroorzaakt door de afwezigheid van Cebpa? 
 Uit RNA-seq van hematopoïetische stam-/voorloper-cellen uitgevoerd op individuele 
cellen in combinatie met RNA-seq van meerdere cellen, bleek dat de meest primitieve HSC-
populatie geen Cebpa tot expressie brengt. Dit sluit uit dat de enhancer-deletie de HSC 
op een cel-autonome manier beïnvloedt. De tweede hypothese werd getest door middel 
van een transplantatie model. Enhancer gedeleteerde (neutropene) beenmergcellen 
werden getransplanteerd in muizen, wat leidde tot een afname van HSC-cellen en latent 
beenmergfalen bij deze muizen. Dit suggereert dat de neutropene beenmergcellen de 
hematopoëse verstoren via nog onbekende, extrinsieke mechanismen.

Samenvattend: dit proefschrift beschrijft nieuwe mechanismen waardoor de Cebpa-
enhancer als een schakelaar de neutrofiele differentiatie en daarbij beenmergintegriteit 
aanstuurt. Deze enhancer is ook een target voor de oncogene deregulatie van CEBPA-
expressie in menselijke AML, zodat het bestuderen van de functie van deze enhancer kan 
fungeren als een paradigma voor het zoeken naar epigenetische therapeutische strategieën 
bij leukemie. 
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LIST OF ABBREVIATIONS 

3C	 Chromatin Conformation Capture
4C-seq	 Circularized Chromatin Conformation Capture
AML	 Acute Myeloid Leukemia
BM	 Bone marrow
PB	 Peripheral Blood
BRD4	 Bromodomain-4
CEBPA	 CCAAT enhancer binding protein alpha
CEBPB	 CCAAT enhancer binding protein beta
CEBPD	 CCAAT enhancer binding protein delta
CEBPE	 CCAAT enhancer binding protein epsilon
CEBPG	 CCAAT enhancer binding protein gamma
CEBPZ	 CCAAT enhancer binding protein zeta
CHD7	 Chromodomain 7
CMP	 Common myeloid progenitors
CRISPR	 Clustered Regularly Interspaced Short Palindromic Repeats
CTCF	 CCCTC binding factor
DNA	 Deoxyribonucleic acid
DNAse1 - HS	 DNAse1 Hypersensitive
FACS	 Fluorescence Activated Cell sorting
GMP	 Granulocytic and Monocytic progenitors
GTF	 General transcription factor
H3K27ac	 Histone 3 lysine 27 acetylation
H3K27me3	 Histone 3 lysine 27 tri-methylation
H3K9ac	 Histone 3 Lysine 9 acetylation
HAT	 Histone acetyl transferases
HDAC	 Histone deacetyl transferases
HSC	 Hematopoietic Stem cell
HSPC	 Hematopoietic Stem and Progenitor Cell
KMT	 Lysine Methyl transferase
LK	 Lineage negative C-Kit positive
LMPPs	 Lymphoid primed multi-potent progenitors
LSK	 Lineage negative C-Kit positive Sca-1 Positive
LT-HSCs	 Long term hematopoietic stem cells
LTF	 Lineage specifc transcription factors
MEP	 Megakaryocytic Erythroid progenitors
MLL	 Mixed lineage leukemia
MPP	 Multi-potent progenitor
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PCR	 polymerase chain reaction
PolII	 RNA polymerase II
RNA	 Ribonucleic acid
ST-HSCs	 Short-term hematopoietic stem cells
TAD	 Topological associated domains
TALENS	 Transcription activator like effector nucleases
TBP	 TATA binding protein
TF	 Trasncription factor
TSS	 Trasnscriptional start site
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