254 research outputs found

    Microfluidic Transport Driven by Opto-Thermal Effects

    Get PDF
    This chapter reviews several approaches towards the manipulation and transport of fluids and macromolecules by optically-induced thermal effects

    Optical flow focusing: Light-induced destabilization of stable liquid threads

    Get PDF
    International audienceConfinement of flowing liquid threads by solid walls makes them stable with respect to the Rayleigh–Plateau instability. We demonstrate here that light can break this stability, by forcing locally the deformation of the liquid interface through thermally-induced Marangoni stresses. Depending upon the confining conditions and fluid properties, this optocapillary deformation either pinches or inflates the thread, which may in both cases lead to its localized fragmentation into droplets. In the pinching regime, the laser beam behaves as a wall-free constriction that flow fo-cuses the thread, leading to successive regimes of single and multiple periodicity. Light-driven local Marangoni stresses may prove an elegant contactless alternative to control reversibly the thread-to-droplet transition for digital microfluidics

    A quantum trampoline for ultra-cold atoms

    Full text link
    We have observed the interferometric suspension of a free-falling Bose-Einstein condensate periodically submitted to multiple-order diffraction by a vertical 1D standing wave. The various diffracted matter waves recombine coherently, resulting in high contrast interference in the number of atoms detected at constant height. For long suspension times, multiple-wave interference is revealed through a sharpening of the fringes. We use this scheme to measure the acceleration of gravity

    Sub-Poissonian statistics of Rydberg-interacting dark-state polaritons

    Full text link
    Interfacing light and matter at the quantum level is at the heart of modern atomic and optical physics and enables new quantum technologies involving the manipulation of single photons and atoms. A prototypical atom-light interface is electromagnetically induced transparency, in which quantum interference gives rise to hybrid states of photons and atoms called dark-state polaritons. We have observed individual dark-state polaritons as they propagate through an ultracold atomic gas involving Rydberg states. Strong long-range interactions between Rydberg atoms give rise to an effective interaction blockade for dark-state polaritons, which results in large optical nonlinearities and modified polariton number statistics. The observed statistical fluctuations drop well below the quantum noise limit indicating that photon correlations modified by the strong interactions have a significant back-action on the Rydberg atom statistics.Comment: 7 pages, 4 figure

    Anisotropic 2D diffusive expansion of ultra-cold atoms in a disordered potential

    Get PDF
    We study the horizontal expansion of vertically confined ultra-cold atoms in the presence of disorder. Vertical confinement allows us to realize a situation with a few coupled harmonic oscillator quantum states. The disordered potential is created by an optical speckle at an angle of 30{\deg} with respect to the horizontal plane, resulting in an effective anisotropy of the correlation lengths of a factor of 2 in that plane. We observe diffusion leading to non-Gaussian density profiles. Diffusion coefficients, extracted from the experimental results, show anisotropy and strong energy dependence, in agreement with numerical calculations

    An experimental approach for investigating many-body phenomena in Rydberg-interacting quantum systems

    Full text link
    Recent developments in the study of ultracold Rydberg gases demand an advanced level of experimental sophistication, in which high atomic and optical densities must be combined with excellent control of external fields and sensitive Rydberg atom detection. We describe a tailored experimental system used to produce and study Rydberg-interacting atoms excited from dense ultracold atomic gases. The experiment has been optimized for fast duty cycles using a high flux cold atom source and a three beam optical dipole trap. The latter enables tuning of the atomic density and temperature over several orders of magnitude, all the way to the Bose-Einstein condensation transition. An electrode structure surrounding the atoms allows for precise control over electric fields and single-particle sensitive field ionization detection of Rydberg atoms. We review two experiments which highlight the influence of strong Rydberg--Rydberg interactions on different many-body systems. First, the Rydberg blockade effect is used to pre-structure an atomic gas prior to its spontaneous evolution into an ultracold plasma. Second, hybrid states of photons and atoms called dark-state polaritons are studied. By looking at the statistical distribution of Rydberg excited atoms we reveal correlations between dark-state polaritons. These experiments will ultimately provide a deeper understanding of many-body phenomena in strongly-interacting regimes, including the study of strongly-coupled plasmas and interfaces between atoms and light at the quantum level.Comment: 14 pages, 11 figures; submitted to a special issue of 'Frontiers of Physics' dedicated to 'Quantum Foundation and Technology: Frontiers and Future

    Interaction enhanced imaging of individual atoms embedded in dense atomic gases

    Full text link
    We propose a new all-optical method to image individual atoms within dense atomic gases. The scheme exploits interaction induced shifts on highly polarizable excited states, which can be spatially resolved via an electromagnetically induced transparency resonance. We focus in particular on imaging strongly interacting many-body states of Rydberg atoms embedded in an ultracold gas of ground state atoms. Using a realistic model we show that it is possible to image individual impurity atoms with enhanced sensitivity and high resolution despite photon shot noise and atomic density fluctuations. This new imaging scheme is ideally suited to equilibrium and dynamical studies of complex many-body phenomena involving strongly interacting atoms. As an example we study blockade effects and correlations in the distribution of Rydberg atoms optically excited from a dense gas.Comment: 5 pages plus supplementary materia
    corecore