545 research outputs found

    Disease decreases variation in host community structure in an old-field grassland

    Full text link
    Disease may modulate variation in host community structure by modifying the interplay of deterministic and stochastic processes. For instance, deterministic processes like ecological selection can benefit species less impacted by disease. When disease consistently selects for certain host species, this can reduce variation in host community composition. On the other hand, when host communities are less impacted by disease and selection is weaker, stochastic processes (e.g., drift, dispersal) may play a bigger role in host community structure, which can increase variation in structure among communities. While effects of disease on host community structure have been quantified in field experiments, few have addressed the role of disease in modulating variation in structure among host communities. To address this, we conducted a field experiment spanning three years, using a tractable system: foliar fungal pathogens in an old-field grassland community dominated by the grass Lolium arundinaceum, tall fescue. We reduced foliar fungal disease burden in replicate host communities (experimental plots in intact vegetation) in three fungicide regimens that varied in the duration of fungicide exposure and included a fungicide-free control. We measured host diversity, biomass, and variation in community structure among replicate communities. Disease reduction generally decreased plant richness and increased aboveground biomass relative to communities experiencing ambient levels of disease. Despite changes in structure of the plant communities over the experiment’s three years, the effects of disease reduction on plant richness and biomass were consistent across years. However, disease reduction did not reduce variation in host community structure, providing little evidence for ecological selection by competition or other deterministic processes. Instead, disease reduction tended to amplify variation in host community structure among replicate communities (i.e., within fungicide treatment groups), suggesting that disease diminished the degree to which host communities were structured by stochastic processes. These results of experimental disease reduction both highlight the potential importance of stochastic processes in plant communities and reveal the potential for disease to regulate variation in host community structure

    Multiple constraints cause positive and negative feedbacks limiting grassland soil CO2efflux under CO2enrichment

    Get PDF
    Terrestrial ecosystems are increasingly enriched with resources such as atmospheric CO2that limit ecosystem processes. The consequences for ecosystem carbon cycling depend on the feedbacks from other limiting resources and plant community change, which remain poorly understood for soil CO2efflux, JCO2, a primary carbon flux from the biosphere to the atmosphere. We applied a unique CO2enrichment gradient (250 to 500 ÎŒL L-1) for eight years to grassland plant communities on soils from different landscape positions. We identified the trajectory of JCO2responses and feedbacks from other resources, plant diversity [effective species richness, exp(H)], and community change (plant species turnover). We found linear increases in JCO2on an alluvial sandy loam and a lowland clay soil, and an asymptotic increase on an upland silty clay soil. Structural equation modeling identified CO2as the dominant limitation on JCO2on the clay soil. In contrast with theory predicting limitation from a single limiting factor, the linear JCO2response on the sandy loam was reinforced by positive feedbacks from aboveground net primary productivity and exp(H), while the asymptotic JCO2response on the silty clay arose from a net negative feedback among exp(H), species turnover, and soil water potential. These findings support a multiple resource limitation view of the effects of global change drivers on grassland ecosystem carbon cycling and highlight a crucial role for positive or negative feedbacks between limiting resources and plant community structure. Incorporating these feedbacks will improve models of terrestrial carbon sequestration and ecosystem services

    Multiple constraints cause positive and negative feedbacks limiting grassland soil CO2efflux under CO2enrichment

    Get PDF
    Terrestrial ecosystems are increasingly enriched with resources such as atmospheric CO2that limit ecosystem processes. The consequences for ecosystem carbon cycling depend on the feedbacks from other limiting resources and plant community change, which remain poorly understood for soil CO2efflux, JCO2, a primary carbon flux from the biosphere to the atmosphere. We applied a unique CO2enrichment gradient (250 to 500 ÎŒL L-1) for eight years to grassland plant communities on soils from different landscape positions. We identified the trajectory of JCO2responses and feedbacks from other resources, plant diversity [effective species richness, exp(H)], and community change (plant species turnover). We found linear increases in JCO2on an alluvial sandy loam and a lowland clay soil, and an asymptotic increase on an upland silty clay soil. Structural equation modeling identified CO2as the dominant limitation on JCO2on the clay soil. In contrast with theory predicting limitation from a single limiting factor, the linear JCO2response on the sandy loam was reinforced by positive feedbacks from aboveground net primary productivity and exp(H), while the asymptotic JCO2response on the silty clay arose from a net negative feedback among exp(H), species turnover, and soil water potential. These findings support a multiple resource limitation view of the effects of global change drivers on grassland ecosystem carbon cycling and highlight a crucial role for positive or negative feedbacks between limiting resources and plant community structure. Incorporating these feedbacks will improve models of terrestrial carbon sequestration and ecosystem services

    IRAC Observations of M81

    Get PDF
    IRAC images of M81 show three distinct morphological constituents: a smooth distribution of evolved stars with bulge, disk, and spiral arm components; a clumpy distribution of dust emission tracing the spiral arms; and a pointlike nuclear source. The bulge stellar colors are consistent with M-type giants, and the disk colors are consistent with a slightly younger population. The dust emission generally follows the blue and ultraviolet emission, but there are large areas that have dust emission without ultraviolet and smaller areas with ultraviolet but little dust emission. The former are presumably caused by extinction, and the latter may be due to cavities in the gas and dust created by supernova explosions. The nucleus appears fainter at 8 um than expected from ground-based 10 um observations made four years ago.Comment: ApJS in press (Spitzer special issue); 15 pages, 3 figures. Changes: unused references removed, numbers and labels in Table 1 change

    Genes, Education, and Labor Market Outcomes: Evidence from the Health and Retirement Study

    Get PDF
    Recent advances have led to the discovery of specific genetic variants that predict educational attainment. We study how these variants, summarized as a genetic score variable, are associated with human capital accumulation and labor market outcomes in the Health and Retirement Study (HRS). We demonstrate that the same genetic score that predicts education is also associated with higher wages, but only among individuals with a college education. Moreover, the genetic gradient in wages has grown in more recent birth cohorts, consistent with interactions between technological change and labor market ability. We also show that individuals who grew up in economically disadvantaged households are less likely to go to college when compared to individuals with the same genetic score, but from higher socioeconomic status households. Our findings provide support for the idea that childhood socioeconomic status is an important moderator of the economic returns to genetic endowments. Moreover, the finding that childhood poverty limits the educational attainment of high-ability individuals suggests the existence of unrealized human potential

    Synthetic High-Resolution Line Spectra of Star-Forming Galaxies Below 1200A

    Get PDF
    We have generated a set of far-ultraviolet stellar libraries using spectra of OB and Wolf-Rayet stars in the Galaxy and the Large and Small Magellanic Cloud. The spectra were collected with the Far Ultraviolet Spectroscopic Explorer and cover a wavelength range from 1003.1 to 1182.7A at a resolution of 0.127A. The libraries extend from the earliest O- to late-O and early-B stars for the Magellanic Cloud and Galactic libraries, respectively. Attention is paid to the complex blending of stellar and interstellar lines, which can be significant, especially in models using Galactic stars. The most severe contamination is due to molecular hydrogen. Using a simple model for the H2_2 line strength, we were able to remove the molecular hydrogen lines in a subset of Magellanic Cloud stars. Variations of the photospheric and wind features of CIII 1176, OVI 1032, 1038, PV 1118, 1128, and SIV 1063, 1073, 1074 are discussed as a function of temperature and luminosity class. The spectral libraries were implemented into the LavalSB and Starburst99 packages and used to compute a standard set of synthetic spectra of star-forming galaxies. Representative spectra are presented for various initial mass functions and star formation histories. The valid parameter space is confined to the youngest ages of less than 10 Myr for an instantaneous burst, prior to the age when incompleteness of spectral types in the libraries sets in. For a continuous burst at solar metallicity, the parameter space is not limited. The suite of models is useful for interpreting the restframe far-ultraviolet in local and high-redshift galaxies.Comment: 33 pages including 13 figures, accepted for publication in Ap

    Early-type galaxies in the SDSS. I. The sample

    Get PDF
    A sample of nearly 9000 early-type galaxies, in the redshift range 0.01 < z < 0.3, was selected from the Sloan Digital Sky Survey using morphological and spectral criteria. This paper describes how the sample was selected, presents examples of images and seeing corrected fits to the observed surface brightness profiles, describes our method for estimating K-corrections, and shows that the SDSS spectra are of sufficiently high quality to measure velocity dispersions accurately. It also provides catalogs of the measured photometric and spectroscopic parameters. In related papers, these data are used to study how early-type galaxy observables, including luminosity, effective radius, surface brightness, color, and velocity dispersion, are correlated with one another.Comment: 63 pages, 21 figures. Accepted by AJ (scheduled for April 2003). This paper is part I of a revised version of astro-ph/0110344. The full version of Tables 2 and 3, i.e. the tables listing the photometric and spectroscopic parameters of ~ 9000 galaxies, are available at http://astrophysics.phys.cmu.edu/~bernardi/SDSS/Etypes/TABLE

    The Sloan Digital Sky Survey Quasar Catalog I. Early Data Release

    Get PDF
    We present the first edition of the Sloan Digital Sky Survey (SDSS) Quasar Catalog. The catalog consists of the 3814 objects (3000 discovered by the SDSS) in the initial SDSS public data release that have at least one emission line with a full width at half maximum larger than 1000 km/s, luminosities brighter than M_i^* = -23, and highly reliable redshifts. The area covered by the catalog is 494 square degrees; the majority of the objects were found in SDSS commissioning data using a multicolor selection technique. The quasar redshifts range from 0.15 to 5.03. For each object the catalog presents positions accurate to better than 0.2" rms per coordinate, five band (ugriz) CCD-based photometry with typical accuracy of 0.05 mag, radio and X-ray emission properties, and information on the morphology and selection method. Calibrated spectra of all objects in the catalog, covering the wavelength region 3800 to 9200 Angstroms at a spectral resolution of 1800-2100, are also available. Since the quasars were selected during the commissioning period, a time when the quasar selection algorithm was undergoing frequent revisions, the sample is not homogeneous and is not intended for statistical analysis.Comment: 27 pages, 4 figures, 4 tables, accepted by A

    The On-Orbit Performance of the Galaxy Evolution Explorer

    Full text link
    We report the first year on-orbit performance results for the Galaxy Evolution Explorer (GALEX), a NASA Small Explorer that is performing a survey of the sky in two ultraviolet bands. The instrument comprises a 50 cm diameter modified Ritchey-Chretien telescope with a 1.25 degree field of view, selectable imaging and objective grism spectroscopic modes, and an innovative optical system with a thin-film multilayer dichroic beam splitter that enables simultaneous imaging by a pair of photon counting, microchannel plate, delay line readout detectors. Initial measurements demonstrate that GALEX is performing well, meeting its requirements for resolution, efficiency, astrometry, bandpass definition and survey sensitivity.Comment: This paper will be published as part of the Galaxy Evolution Explorer (GALEX) Astrophysical Journal Letters Special Issu
    • 

    corecore