69 research outputs found

    G1-Cyclin2 (Cln2) promotes chromosome hypercondensation in eco1/ctf7 rad61 null cells during hyperthermic stress in Saccharomyces cerevisiae

    Get PDF
    Eco1/Ctf7 is a highly conserved acetyltransferase that activates cohesin complexes and is critical for sister chromatid cohesion, chromosome condensation, DNA damage repair, nucleolar integrity, and gene transcription. Mutations in the human homolog of ECO1 (ESCO2/EFO2), or in genes that encode cohesin subunits, result in severe developmental abnormalities and intellectual disabilities referred to as Roberts syndrome and Cornelia de Lange syndrome, respectively. In yeast, deletion of ECO1 results in cell inviability. Codeletion of RAD61 (WAPL in humans), however, produces viable yeast cells. These eco1 rad61 double mutants, however, exhibit a severe temperature-sensitive growth defect, suggesting that Eco1 or cohesins respond to hyperthermic stress through a mechanism that occurs independent of Rad61. Here, we report that deletion of the G1 cyclin CLN2 rescues the temperature-sensitive lethality otherwise exhibited by eco1 rad61 mutant cells, such that the triple mutant cells exhibit robust growth over a broad range of temperatures. While Cln1, Cln2, and Cln3 are functionally redundant G1 cyclins, neither CLN1 nor CLN3 deletions rescue the temperature-sensitive growth defects otherwise exhibited by eco1 rad61 double mutants. We further provide evidence that CLN2 deletion rescues hyperthermic growth defects independent of START and impacts the state of chromosome condensation. These findings reveal novel roles for Cln2 that are unique among the G1 cyclin family and appear critical for cohesin regulation during hyperthermic stress

    Sister chromatid cohesion establishment occurs in concert with lagging strand synthesis

    Get PDF
    Cohesion establishment is central to sister chromatid tethering reactions and requires Ctf7/Eco1-dependent acetylation of the cohesin subunit Smc3. Ctf7/Eco1 is essential during S phase, and a number of replication proteins (RFC complexes, PCNA and the DNA helicase Chl1) all play individual roles in sister chromatid cohesion. While the mechanism of cohesion establishment is largely unknown, a popular model is that Ctf7/Eco1 acetylates cohesins encountered by and located in front of the fork. In turn, acetylation is posited both to allow fork passage past cohesin barriers and convert cohesins to a state competent to capture subsequent production of sister chromatids. Here, we report evidence that challenges this pre-replicative cohesion establishment model. Our genetic and biochemical studies link Ctf7/Eco1 to the Okazaki fragment flap endonuclease, Fen1. We further report genetic and biochemical interactions between Fen1 and the cohesion-associated DNA helicase, Chl1. These results raise a new model wherein cohesin deposition and establishment occur in concert with lagging strand-processing events and in the presence of both sister chromatids

    Replication Factor C Complexes Play Unique Pro- and Anti-Establishment Roles in Sister Chromatid Cohesion

    Get PDF
    Recent studies have lead to a rapid expansion of sister chromatid cohesion pathways. Of particular interest is the growth in classifications of anti-establishment factors—now including those that are cohesin-associated (Rad61/WAPL and Pds5) or DNA replication fork-associated (Elg1-RFC). In this study, we show that the two classes of anti-establishment complexes are indistinguishable when challenged both genetically and functionally. These findings suggest that both classes function in a singular pathway that is centered on Ctf7/Eco1 (herein termed Ctf7) regulation. The anti-establishment activity of Elg1-RFC complex is particular intriguing given that an alternate Ctf18-RFC complex exhibits robust pro-establishment activity. Here, we provide several lines of evidence, including the use of Ctf7 bypass suppressors, indicating that these activities are not simply antagonistic. Moreover, the results suggest that Ctf18-RFC is capable of promoting sister chromatid pairing reactions independent of Ctf7. The combination of these studies suggest a new model of sister chromatid pairing regulation

    The Elg1-RFC Clamp-Loading Complex Performs a Role in Sister Chromatid Cohesion

    Get PDF
    It is widely accepted that of the four Replication Factor C (RFC) complexes (defined by the associations of either Rfc1p, Ctf18p, Elg1p or Rad24p with Rfc2p-Rfc5p), only Ctf18-RFC functions in sister chromatid cohesion. This model is based on findings that CTF18 deletion is lethal in combination with mutations in either CTF7ECO1 or MCD1 sister chromatid cohesion genes and that ctf18 mutant cells exhibit cohesion defects. Here, we report that Elg1-RFC not only participates in cohesion but performs a function that is distinct from that of Ctf18-RFC. The results show that deletion of ELG1 rescues both ctf7eco1 mutant cell temperature sensitivity and cohesion defects. Moreover, over-expression of ELG1 enhances ctf7eco1 mutant cell phenotypes. These findings suggest that the balance of Ctf7pEco1p activity depends on both Ctf18-RFC and Elg1-RFC. We also report that ELG1 deletion produces cohesion defects and intensifies the conditional phenotype of mcd1 mutant cells, further supporting a role for Elg1-RFC in cohesion. Attesting to the specificity of these interactions, deletion of RAD24 neither suppressed nor exacerbated cohesion defects in either ctf7eco1 or mcd1 mutant cells. While parallel analyses failed to uncover a similar role in cohesion for Rad24-RFC, it is well known that Rad24-RFC, Elg1-RFC and Ctf18-RFC play key roles in DNA damage responses. We tested and found that Ctf7pEco1p plays a significant role in Rad24-RFC-based DNA response pathways. In combination, these findings challenge current views and document new and distinct roles for RFC complexes in cohesion and for Ctf7pEco1p in DNA repair

    A Multi-Step Pathway for the Establishment of Sister Chromatid Cohesion

    Get PDF
    The cohesion of sister chromatids is mediated by cohesin, a protein complex containing members of the structural maintenance of chromosome (Smc) family. How cohesins tether sister chromatids is not yet understood. Here, we mutate SMC1, the gene encoding a cohesin subunit of budding yeast, by random insertion dominant negative mutagenesis to generate alleles that are highly informative for cohesin assembly and function. Cohesins mutated in the Hinge or Loop1 regions of Smc1 bind chromatin by a mechanism similar to wild-type cohesin, but fail to enrich at cohesin-associated regions (CARs) and pericentric regions. Hence, the Hinge and Loop1 regions of Smc1 are essential for the specific chromatin binding of cohesin. This specific binding and a subsequent Ctf7/Eco1-dependent step are both required for the establishment of cohesion. We propose that a cohesin or cohesin oligomer tethers the sister chromatids through two chromatin-binding events that are regulated spatially by CAR binding and temporally by Ctf7 activation, to ensure cohesins crosslink only sister chromatids

    Dosage Effects of Cohesin Regulatory Factor PDS5 on Mammalian Development: Implications for Cohesinopathies

    Get PDF
    Cornelia de Lange syndrome (CdLS), a disorder caused by mutations in cohesion proteins, is characterized by multisystem developmental abnormalities. PDS5, a cohesion protein, is important for proper chromosome segregation in lower organisms and has two homologues in vertebrates (PDS5A and PDS5B). Pds5B mutant mice have developmental abnormalities resembling CdLS; however the role of Pds5A in mammals and the association of PDS5 proteins with CdLS are unknown. To delineate genetic interactions between Pds5A and Pds5B and explore mechanisms underlying phenotypic variability, we generated Pds5A-deficient mice. Curiously, these mice exhibit multiple abnormalities that were previously observed in Pds5B-deficient mice, including cleft palate, skeletal patterning defects, growth retardation, congenital heart defects and delayed migration of enteric neuron precursors. They also frequently display renal agenesis, an abnormality not observed in Pds5B−/− mice. While Pds5A−/− and Pds5B−/− mice die at birth, embryos harboring 3 mutant Pds5 alleles die between E11.5 and E12.5 most likely of heart failure, indicating that total Pds5 gene dosage is critical for normal development. In addition, characterization of these compound homozygous-heterozygous mice revealed a severe abnormality in lens formation that does not occur in either Pds5A−/− or Pds5B−/− mice. We further identified a functional missense mutation (R1292Q) in the PDS5B DNA-binding domain in a familial case of CdLS, in which affected individuals also develop megacolon. This study shows that PDS5A and PDS5B functions other than those involving chromosomal dynamics are important for normal development, highlights the sensitivity of key developmental processes on PDS5 signaling, and provides mechanistic insights into how PDS5 mutations may lead to CdLS

    Directional instability of kinetochore motility during chromosome congression and segregation in mitotic newt lung cells: a push-pull mechanism

    Get PDF
    Abstract. Most models of mitotic congression and segregation assume that only poleward pulling forces occur at kinetochores. However, there are reports for several different cell types that both mono-oriented and bi-oriented chromosomes oscillate toward and away from the pole throughout mitosis. We used new methods of high resolution video microscopy and computer-assisted tracking techniques to measure the positions over time of individual kinetochores with respect to their poles during mitosis in living newt lung cells. The results show that kinetochores oscillate throughout mitosis when they are tethered to spindle poles by attachment to the plus-ends of kinetochore microtubules (kMTs). Oscillations were not sinusoidal. Instead, kinetochores abruptly (as quick as 6 s or less) switched between persistent (,,ol.5 min average duration) phases of poleward (P) and away from the pole (AP) movement. This kinetochore "directional instability " was a property of motility at the plus-ends of kMTs since fluorescent marks on the lattice of kMTs have previously been observed to ex-INETOCHORES in association with kinetochore microtubules (kMTs) ~ are responsible for the attachment of chromosomes to spindle poles, chromosome congression to the spindle equator during metaphase, and segregation to the spindle poles during anaphase in mitotic animal cells (for review see Salmon, 1989b; Rieder, 1991; McIntosh and Pfarr, 1991). Kinetochores become tethered to polar microtubules (MTs) by capturing and stabilizing the dynamically instable MT plus-ends (Pickett-Heaps et al.

    Correction: Of Rings and Rods: Regulating Cohesin Entrapment of DNA to Generate Intra- and Intermolecular Tethers.

    No full text
    [This corrects the article DOI: 10.1371/journal.pgen.1006337.]

    Of Rings and Rods: Regulating Cohesin Entrapment of DNA to Generate Intra- and Intermolecular Tethers.

    No full text
    The clinical relevance of cohesin in DNA repair, tumorigenesis, and severe birth defects continues to fuel efforts in understanding cohesin structure, regulation, and enzymology. Early models depicting huge cohesin rings that entrap two DNA segments within a single lumen are fading into obscurity based on contradictory findings, but elucidating cohesin structure amid a myriad of functions remains challenging. Due in large part to integrated uses of a wide range of methodologies, recent advances are beginning to cast light into the depths that previously cloaked cohesin structure. Additional efforts similarly provide new insights into cohesin enzymology: specifically, the discoveries of ATP-dependent transitions that promote cohesin binding and release from DNA. In combination, these efforts posit a new model that cohesin exists primarily as a relatively flattened structure that entraps only a single DNA molecule and that subsequent ATP hydrolysis, acetylation, and oligomeric assembly tether together individual DNA segments
    corecore