37 research outputs found

    Entwicklung von Fertigungstechnologien zur Herstellung biomimetischer faserbasierter Scaffolds aus Kollagen für das Tissue Engineering und die regenerative Medizin

    Get PDF
    Die enormen Fortschritte und Erkenntnisse der Medizin und der damit einhergehenden gestiegenen mittleren globalen Lebenserwartung von indes knapp 75 Jahren fußen auch auf den medizinischen Entwicklungen des 20. Jahrhunderts, da durch diese z. B. infektiöse und onkologische Erkrankungen, Diabetes, Bluthochdruck, Herzinsuffizienz, Magengeschwüre, Depressionen, Hämophilie und andere Krankheiten erfolgreich therapiert werden können. Die entwickelten Therapiemethoden beruhten im Wesentlichen auf chirurgischen und intensivmedizinischen Neuerungen, chemischen Wirkstoffen, belastungsfähigen Implantaten und extrakorporalen Systemen. Im 21. Jahrhundert hingegen sind medizinische Neuerungen im molekularbiologischen Bereich zu erwarten, wie beispielsweise in der Zellbiologie, DNA-Analyse und -Transfer oder in der regenerativen Medizin. In Letzterer werden autologe regenerative Mechanismen als therapeutisches Prinzip genutzt, um funktionsgestörte Zellen, Gewebe und Organe entweder durch den biologischen Ersatz oder durch die Anregung körpereigener Regenerations- und Reparaturprozesse zu erhalten bzw. wiederherzustellen

    Factors affecting the mechanical and geometrical properties of electrostatically flocked pure chitosan fiber scaffolds

    Get PDF
    The field of articular cartilage tissue engineering has developed rapidly, and chitosan has become a promising material for scaffold fabrication. For this paper, wet-spun biocompatible chitosan filament yarns were converted into short flock fibers and subsequently electrostatically flocked onto a chitosan substrate, resulting in a pure, highly open, porous, and biodegradable chitosan scaffold. Analyzing the wet-spinning of chitosan revealed its advantages and disadvantages with respect to the fabrication of the fiber-based chitosan scaffolds. The scaffolds were prepared using varying processing parameters and were analyzed in regards to their geometrical and mechanical properties. It was found that the pore sizes were adjustable between 65 and 310 µm, and the compressive strength was in the range 13–57 kPa

    Valley Dynamics of Excitons in Monolayer Dichalcogenides

    Full text link
    Monolayer transition-metal dichalcogenides (TMDCs) have recently emerged as possible candidates for valleytronic applications, as the spin and valley pseudospin are directly coupled and stabilized by a large spin splitting. In these semiconducting materials, optically excited electron-hole pairs form tightly Coulomb-bound excitons with large binding energies. The selection rules for excitonic transitions allow for direct optical generation of a valley-polarized exciton population using resonant excitation. Here, we investigate the exciton valley dynamics in monolayers of three different TMDCs by means of time-resolved Kerr rotation at low temperatures. We observe pronounced differences in the valley dynamics of tungsten- and molybdenum-based TMDCs, which are directly related to the opposite order of the conduction-band spin splitting in these materials

    Isotropic and Anisotropic Scaffolds for Tissue Engineering: Collagen, Conventional, and Textile Fabrication Technologies and Properties

    No full text
    In this review article, tissue engineering and regenerative medicine are briefly explained and the importance of scaffolds is highlighted. Furthermore, the requirements of scaffolds and how they can be fulfilled by using specific biomaterials and fabrication methods are presented. Detailed insight is given into the two biopolymers chitosan and collagen. The fabrication methods are divided into two categories: isotropic and anisotropic scaffold fabrication methods. Processable biomaterials and achievable pore sizes are assigned to each method. In addition, fiber spinning methods and textile fabrication methods used to produce anisotropic scaffolds are described in detail and the advantages of anisotropic scaffolds for tissue engineering and regenerative medicine are highlighted

    Entwicklung von Fertigungstechnologien zur Herstellung biomimetischer faserbasierter Scaffolds aus Kollagen für das Tissue Engineering und die regenerative Medizin

    No full text
    Die enormen Fortschritte und Erkenntnisse der Medizin und der damit einhergehenden gestiegenen mittleren globalen Lebenserwartung von indes knapp 75 Jahren fußen auch auf den medizinischen Entwicklungen des 20. Jahrhunderts, da durch diese z. B. infektiöse und onkologische Erkrankungen, Diabetes, Bluthochdruck, Herzinsuffizienz, Magengeschwüre, Depressionen, Hämophilie und andere Krankheiten erfolgreich therapiert werden können. Die entwickelten Therapiemethoden beruhten im Wesentlichen auf chirurgischen und intensivmedizinischen Neuerungen, chemischen Wirkstoffen, belastungsfähigen Implantaten und extrakorporalen Systemen. Im 21. Jahrhundert hingegen sind medizinische Neuerungen im molekularbiologischen Bereich zu erwarten, wie beispielsweise in der Zellbiologie, DNA-Analyse und -Transfer oder in der regenerativen Medizin. In Letzterer werden autologe regenerative Mechanismen als therapeutisches Prinzip genutzt, um funktionsgestörte Zellen, Gewebe und Organe entweder durch den biologischen Ersatz oder durch die Anregung körpereigener Regenerations- und Reparaturprozesse zu erhalten bzw. wiederherzustellen

    Entwicklung von Fertigungstechnologien zur Herstellung biomimetischer faserbasierter Scaffolds aus Kollagen für das Tissue Engineering und die regenerative Medizin

    Get PDF
    Die enormen Fortschritte und Erkenntnisse der Medizin und der damit einhergehenden gestiegenen mittleren globalen Lebenserwartung von indes knapp 75 Jahren fußen auch auf den medizinischen Entwicklungen des 20. Jahrhunderts, da durch diese z. B. infektiöse und onkologische Erkrankungen, Diabetes, Bluthochdruck, Herzinsuffizienz, Magengeschwüre, Depressionen, Hämophilie und andere Krankheiten erfolgreich therapiert werden können. Die entwickelten Therapiemethoden beruhten im Wesentlichen auf chirurgischen und intensivmedizinischen Neuerungen, chemischen Wirkstoffen, belastungsfähigen Implantaten und extrakorporalen Systemen. Im 21. Jahrhundert hingegen sind medizinische Neuerungen im molekularbiologischen Bereich zu erwarten, wie beispielsweise in der Zellbiologie, DNA-Analyse und -Transfer oder in der regenerativen Medizin. In Letzterer werden autologe regenerative Mechanismen als therapeutisches Prinzip genutzt, um funktionsgestörte Zellen, Gewebe und Organe entweder durch den biologischen Ersatz oder durch die Anregung körpereigener Regenerations- und Reparaturprozesse zu erhalten bzw. wiederherzustellen

    Thermoresponsive Shape Memory Fibers for Compression Garments

    No full text
    Their highly deformable properties make shape memory polymers (SMP) a promising component for the development of new compression garments. The shape memory effect (SME) can be observed when two polymers are combined. In here, polycaprolactone (PCL) and thermoplastic polyurethane (TPU) were melt spun in different arrangement types (blend, core-sheath, and island-in-sea), whereas the best SME was observed for the blend type. In order to trigger the SME, this yarn was stimulated at a temperature of 50 °C. It showed a strain fixation of 62%, a strain recovery of 99%, and a recovery stress of 2.7 MPa

    Influence of Spinning Method on Shape Memory Effect of Thermoplastic Polyurethane Yarns

    No full text
    Shape memory polymers are gaining increasing attention, especially in the medical field, due to their ability to recover high deformations, low activation temperatures, and relatively high actuation stress. Furthermore, shape memory polymers can be applied as fiber-based solutions for the development of smart devices used in many fields, e.g., industry 4.0, medicine, and skill learning. These kind of applications require sensors, actors, and conductive structures. Textile structures address these applications by meeting requirements such as being flexible, adaptable, and wearable. In this work, the influence of spinning methods and parameters on the effect of shape memory polymer yarns was investigated, comparing melt and wet spinning. It is shown that the spinning method can significantly influence the strain fixation and generated stress during the activation of the shape memory effect. Furthermore, for wet spinning, the draw ratio could affect the stress conversion, influencing its efficiency. Therefore, the selection of the spinning process is essential for the setting of application-specific shape-changing properties

    Designing UV/VIS/NIR-sensitive shape memory filament yarns

    Get PDF
    A novel laser light-sensitive yarn based on a thermoplastic polyester–urethane (TPU) has been prepared and analyzed. Since the thermosensitive shape memory polymer yarn (SMP yarn) has been functionalized using nanoscale heat sources exhibiting light-induced heat generation, the yarn is capable of an optically triggered shape memory effect (SME). For this purpose gold nanorods (GNR) have been employed. In addition to the incorporation of GNR into the yarn, a coating of GNR on the yarn is also proposed, applied by a semi-continuous layer-by-layer (LBL) technique. The SME of the functionalized yarns can be triggered either thermally or optically and has a strain recovery of almost 100%. The light-induced SME is triggered by a low-powered laser (808 nm, 2 W for a GNR-incorporated and 1W for a GNRcoated TPU yarn). A reference yarn without GNR showed no significant effect. An adaptive structure featuring a SMPyarn backed shape memory effect has been proposed and demonstrated
    corecore