397 research outputs found
Degradation of Communication Range in VANETs Caused by Interference 2.0 - Real-World Experiment
High channel load in vehicle-to-vehicle communication leads to a degradation of the vehicles’ communication range, due to interference and hence packet loss at larger distances. Packet loss results from two or more concurrent transmissions, colliding at receivers located inbetween, which is also known as the hidden station problem. In previous works, our simulation study has shown that this packet loss leads to a degradation of 90% of the communication range. In this paper, we confirm the simulation results by real-world measurements. We present a methodology for transferring the simulation scenario to a real-world measurement scenario, able to evaluate the problem of hidden stations.
With three radios applying the IEEE 802.11p standard, we measure the degradation of the communication range under interference. In the measurement, we find a degradation of 50 to 70%. On the one hand, there are less collisions due to only one hidden station. On the other hand, we identify that the receiving vehicle as a shadowing object itself is an additional origin for hiding the other station which slightly increases the number of collisions even at close distances
Multi-stage high order semi-Lagrangian schemes for incompressible flows in Cartesian geometries
Efficient transport algorithms are essential to the numerical resolution of
incompressible fluid flow problems. Semi-Lagrangian methods are widely used in
grid based methods to achieve this aim. The accuracy of the interpolation
strategy then determines the properties of the scheme. We introduce a simple
multi-stage procedure which can easily be used to increase the order of
accuracy of a code based on multi-linear interpolations. This approach is an
extension of a corrective algorithm introduced by Dupont \& Liu (2003, 2007).
This multi-stage procedure can be easily implemented in existing parallel codes
using a domain decomposition strategy, as the communications pattern is
identical to that of the multi-linear scheme. We show how a combination of a
forward and backward error correction can provide a third-order accurate
scheme, thus significantly reducing diffusive effects while retaining a
non-dispersive leading error term.Comment: 14 pages, 10 figure
Results of the 2016 Indianapolis Biodiversity Survey, Marion County, Indiana
Surprising biodiversity can be found in cities, but urban habitats are understudied. We report on a bioblitz conducted primarily within a 24-hr period on September 16 and 17, 2016 in Indianapolis, Indiana, USA. The event focused on stretches of three waterways and their associated riparian habitat: Fall Creek (20.6 ha; 51 acres), Pleasant Run (23.5 ha; 58 acres), and Pogue’s Run (27.1 ha; 67 acres). Over 75 scientists, naturalists, students, and citizen volunteers comprised 14 different taxonomic teams. Five hundred ninety taxa were documented despite the rainy conditions. A brief summary of the methods and findings are presented here. Detailed maps of survey locations and inventory results are available on the Indiana Academy of Science website (https://www.indianaacademyofscience.org/)
An iterative semi-implicit scheme with robust damping
An efficient, iterative semi-implicit (SI) numerical method for the time
integration of stiff wave systems is presented. Physics-based assumptions are
used to derive a convergent iterative formulation of the SI scheme which
enables the monitoring and control of the error introduced by the SI operator.
This iteration essentially turns a semi-implicit method into a fully implicit
method. Accuracy, rather than stability, determines the timestep. The scheme is
second-order accurate and shown to be equivalent to a simple preconditioning
method. We show how the diffusion operators can be handled so as to yield the
property of robust damping, i.e., dissipating the solution at all values of the
parameter \mathcal D\dt, where is a diffusion operator and \dt
the timestep. The overall scheme remains second-order accurate even if the
advection and diffusion operators do not commute. In the limit of no physical
dissipation, and for a linear test wave problem, the method is shown to be
symplectic. The method is tested on the problem of Kinetic Alfv\'en wave
mediated magnetic reconnection. A Fourier (pseudo-spectral) representation is
used. A 2-field gyrofluid model is used and an efficacious k-space SI operator
for this problem is demonstrated. CPU speed-up factors over a CFL-limited
explicit algorithm ranging from to several hundreds are obtained,
while accurately capturing the results of an explicit integration. Possible
extension of these results to a real-space (grid) discretization is discussed.Comment: Submitted to the Journal of Computational Physics. Clarifications and
caveats in response to referees, numerical demonstration of convergence rate,
generalized symplectic proo
International Coercion, Emulation and Policy Diffusion: Market-Oriented Infrastructure Reforms, 1977-1999
Why do some countries adopt market-oriented reforms such as deregulation, privatization and liberalization of competition in their infrastructure industries while others do not? Why did the pace of adoption accelerate in the 1990s? Building on neo-institutional theory in sociology, we argue that the domestic adoption of market-oriented reforms is strongly influenced by international pressures of coercion and emulation. We find robust support for these arguments with an event-history analysis of the determinants of reform in the telecommunications and electricity sectors of as many as 205 countries and territories between 1977 and 1999. Our results also suggest that the coercive effect of multilateral lending from the IMF, the World Bank or Regional Development Banks is increasing over time, a finding that is consistent with anecdotal evidence that multilateral organizations have broadened the scope of the “conditionality” terms specifying market-oriented reforms imposed on borrowing countries. We discuss the possibility that, by pressuring countries into policy reform, cross-national coercion and emulation may not produce ideal outcomes.http://deepblue.lib.umich.edu/bitstream/2027.42/40099/3/wp713.pd
Canadian Initiatives to Prevent Hypertension by Reducing Dietary Sodium
Hypertension is the leading risk for premature death in the world. High dietary sodium is an important contributor to increased blood pressure and is strongly associated with other important diseases (e.g., gastric cancer, calcium containing kidney stones, osteoporosis, asthma and obesity). The average dietary sodium intake in Canada is approximately 3400 mg/day. It is estimated that 30% of hypertension, more than 10% of cardiovascular events and 1.4 billion dollars/year in health care expenses are caused by this high level of intake in Canada. Since 2006, Canada has had a focused and evolving effort to reduce dietary sodium based on actions from Non Governmental Organizations (NGO), and Federal and Provincial/Territorial Government actions. NGOs initiated Canadian sodium reduction programs by developing a policy statement outlining the health issue and calling for governmental, NGO and industry action, developing and disseminating an extensive health care professional education program including resources for patient education, developing a public awareness campaign through extensive media releases and publications in the lay press. The Federal Government responded by striking a Intersectoral Sodium Work Group to develop recommendations on how to implement Canada’s dietary reference intake values for dietary sodium and by developing timelines and targets for foods to be reduced in sodium, assessing key research gaps with funding for targeted dietary sodium based research, developing plans for public education and for conducting evaluation of the program to reduce dietary sodium. While food regulation is a Federal Government responsibility Provincial and Territorial governments indicated reducing dietary sodium needed to be a priority. Federal and Provincial Ministers of Health have endorsed a target to reduce the average consumption of sodium to 2300 mg/day by 2016 and the Deputy Ministers of Health have tasked a joint committee to review the recommendations of the Sodium Work Group and report back to them
Modelling and numerical approximation of a 2.5D set of equations for mesoscale atmospheric processes
The set of 3D inviscid primitive equations for the atmosphere is
dimensionally reduced by a Discontinuous Galerkin discretization in one
horizontal direction. The resulting model is a 2D system of balance laws where
with a source term depending on the layering procedure and the choice of
coupling fluxes, which is established in terms of upwind considerations. The
"2.5D" system is discretized via a WENO-TVD scheme based in a flux limiter
centered approach. We study four tests cases related to atmospheric phenomena
to analyze the physical validity of the model
- …