25 research outputs found

    Gestión eficiente de los convertidores de potencia conectados al bus DC de una Microrred híbrida de generación distribuida

    Full text link
    Tesis por compendio[ES] Dos aspectos críticos en la operación de una microrred son las estrategias de control y gestión de potencia implementadas, las cuales son esenciales para proporcionar su buen funcionamiento. La aplicación adecuada de dichas estrategias permite compensar los desequilibrios de potencia causados por la discontinuidad de la generación y de la demanda de energía en las microrredes. En este sentido, el objetivo global de estas estrategias de gestión es equilibrar adecuadamente el flujo de potencia en la microrred, mediante la aplicación de diferentes algoritmos que permiten cumplir con los criterios de estabilidad, protección, balance de potencia, transiciones, sincronización con la red y gestión adecuada de la microrred. En el caso de microrredes de pequeña escala de potencia con bajo número de generadores y sistemas de almacenamiento distribuidos, las estrategias de control centralizado ofrecen un alto nivel de flexibilidad para lograr funcionalidades avanzadas en la microrred y una adecuada distribución de la potencia entre los convertidores que la conforman. Esta tesis se ha enmarcado en el contexto de algoritmos de gestión centralizada de potencia de una microrred de generación distribuida en modo conectado a red. Los algoritmos presentados se pueden aplicar a los convertidores de potencia conectados al bus DC de una microrred AC/DC híbrida o en una microrred de DC, donde el despacho de potencia es observado y gestionado por un controlador central. Este último adquiere datos del sistema mediante una infraestructura de comunicaciones y estima la potencia que gestionará cada uno de los convertidores de potencia, sistemas de almacenamiento y cargas en funcionamiento. En este estudio se muestra la validación experimental de las estrategias de gestión aplicadas en la microrred desde el enfoque del comportamiento de los convertidores de potencia, de las baterías y las cargas ante dicha gestión. Se verifica la estabilidad de la microrred sometiendo a los convertidores a diferentes escenarios de funcionamiento. Estos escenarios pueden ser fluctuaciones en la irradiación, la demanda, el estado de carga de las baterías, los límites máximos de exportación/importación de potencia desde/hacia la microrred hacia/desde la red principal y de la tarifa eléctrica. Adicionalmente, se propone un sistema de almacenamiento de energía en baterías encargado de mantener el equilibrio de potencia en el bus de DC de la microrred que permite aprovechar las fuentes de generación renovables presentes en la microrred y maximizar el tiempo de servicio de las baterías mediante la aplicación de un algoritmo de carga de las baterías. Este último se ajusta al procedimiento de carga especificado por el fabricante, estableciendo las tasas de carga en función de los escenarios en que la microrred se encuentre. El procedimiento de carga en las baterías es fundamental para garantizar las condiciones adecuadas de operación de las mismas, ya que toman en consideración los parámetros establecidos por el fabricante, como son: tasas de carga/descarga, tensión máxima de carga, temperaturas de operación, etc.[CA] Dos dels aspectes crítics en l'operació d'una micro-xarxa són les estratègies de control i gestió de potència implementades, les quals són essencials per proporcionar el seu bon funcionament. L'aplicació adequada de dites estratègies permet compensar els desequilibris de potència causats per la discontinuïtat de la generació i demanda d'energia en les micro-xarxes. En aquest sentit, l'objectiu global de les nomenades estratègies de gestió és equilibrar adequadament el flux de potència en la micro-xarxa mitjançant l'aplicació de diferents algoritmes que permeten complir amb els criteris d'estabilitat, protecció, balanç de potència, transicions, sincronització amb la xarxa i gestió adequada de la micro-xarxa. En el cas de micro-xarxes de potència a petita escala i amb baix nombre de generadors i sistemes d'emmagatzematge distribuïts, les estratègies de control centralitzades ofereixen un alt nivell de flexibilitat per aconseguir funcionalitats avançades en la micro-xarxa i una adequada distribució de la potència entre els convertidors que la conformen. Aquesta tesi s'ha emmarcat al context d'algoritmes de gestió centralitzada de potència d'una micro-xarxa de generació distribuïda en mode de connexió a xarxa. Els algoritmes presentats es poden aplicar als convertidors de potència connectats al bus DC d'una micro-xarxa AC/DC hibrida o en una micro-xarxa de DC, on el despatx de potència és observat i gestionat per un controlador central. Aquest últim adquireix dades del sistema mitjançant una infraestructura de comunicacions i estima la potència que gestionarà cadascun dels convertidors de potència, sistemes d'emmagatzematge i càrregues en funcionament. En aquest estudi es mostren la validació experimental de les estratègies de gestió aplicades en la micro-xarxa des d'un enfocament dels convertidors de potència, de les bateries i les càrregues davant d'aquesta gestió. Es verifica l'estabilitat de la micro-xarxa exposant als convertidors a diferents escenaris de funcionament. Aquest escenaris poden ser fluctuants en la irradiació, la demanda, l'estat de càrrega de les bateries, els límits màxims d'exportació/importació de potència des de/cap a la micro-xarxa cap a/des de la xarxa principal i de la tarifa elèctrica. Addicionalment, es proposa un sistema d'emmagatzematge d'energia en bateries encarregats de mantindre l'equilibri de potència al bus DC de la micro-xarxa i que permet aprofitar les fonts de generació renovables presents en la micro-xarxa i maximitzar el temps de servei de les bateries mitjançant l'aplicació d'un algoritme de càrrega de bateries. Aquest últim s'ajusta al procediment de càrrega especificat pel fabricant, establint les taxes de càrrega en funció dels escenaris en que la micro-xarxa es trobe. El procediment de càrrega a les bateries es fonamental per garantir les condicions adequades d'operació de les mateixes, ja que prenen en consideració els paràmetres establerts pel fabricant, com ara són: taxes de càrrega/descàrrega, tensió màxima de càrrega, temperatures d'operació, etc.[EN] Two critical aspects in microgrids operation are the control and power management strategies, which are essential for their efficient operation. The adequate application of these strategies allows compensating the power imbalance caused by the discontinuity in the energy generation or changes in the power demand of the microgrid. In this sense, the overall objective of these power management strategies is to keep the power balance between the generation and the demand in the microgrid through the application of different algorithms that fulfill the criteria of stability, protection, smooth transitions and synchronization with the main grid. In the case of small-scale microgrids with a low number of distributed generators and energy storage systems, the centralized control strategies offer a higher level of flexibility to achieve advanced features in the microgrid and for the suitable power sharing between the converters that compose it. This thesis has been focused on centralized power management algorithms of a microgrid working in grid connected mode. These algorithms can be applied to the power converters connected to the DC bus of both hybrid AC/DC and DC microgrids, where the power dispatch is controlled by a central controller which acquires system data through a communication infrastructure and sets the power to be managed by each of the converters under operation. In this thesis, the experimental validation of the power management strategies of the microgrid is presented, from the point of view of the behavior of the power converters, batteries and loads. It is provided with a realistic evaluation under different microgrid operation scenarios. These scenarios were sudden changes of the irradiation, load, state of charge, the maximum power to be exported/imported from/to the microgrid to/from the grid, and the electricity tariff. Additionally, it is proposed a battery energy storage system that keeps the power balance at the DC bus of the microgrid, taking advantage from the renewable energy sources and adjusting the battery energy storage through a suitable charging procedure specified by the manufacturer. The proposed procedure changes the charging parameters of the batteries depending on the microgrid states. Its goal is to extend the service time of batteries and to allow proper energy management in the system.Salas Puente, RA. (2019). Gestión eficiente de los convertidores de potencia conectados al bus DC de una Microrred híbrida de generación distribuida [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/118658TESISCompendi

    Current challenges and future trends in the field of communication architectures for microgrids

    Full text link
    [EN] The concept of microgrid has emerged as a feasible answer to cope with the increasing number of distributed renewable energy sources which are being introduced into the electrical grid. The microgrid communication network should guarantee a complete and bidirectional connectivity among the microgrid resources, a high reliability and a feasible interoperability. This is in a contrast to the current electrical grid structure which is characterized by the lack of connectivity, being a centralized-unidirectional system. In this paper a review of the microgrids information and communication technologies (ICT) is shown. In addition, a guideline for the transition from the current communication systems to the future generation of microgrid communications is provided. This paper contains a systematic review of the most suitable communication network topologies, technologies and protocols for smart microgrids. It is concluded that a new generation of peer-to-peer communication systems is required towards a dynamic smart microgrid. Potential future research about communications of the next microgrid generation is also identified.This work is supported by the Spanish Ministry of Economy and Competitiveness (MINECO) and the European Regional Development Fund (ERDF) under Grant ENE2015-64087-C2-2. This work is supported by the Spanish Ministry of Economy and Competitiveness (MINECO) under grant BES-2013-064539.Marzal-Romeu, S.; Salas-Puente, RA.; González Medina, R.; Garcerá, G.; Figueres Amorós, E. (2018). Current challenges and future trends in the field of communication architectures for microgrids. Renewable and Sustainable Energy Reviews. 82(2):3610-3622. https://doi.org/10.1016/j.rser.2017.10.101S3610362282

    An Algorithm for the Efficient Management of the Power Converters Connected to the DC Bus of a Hybrid Microgrid Operating in Grid-connection Mode

    Full text link
    [EN] In this paper a centralized control strategy for the efficient power management of the power converters conforming a hybrid distributed generation microgrid is explained. The microgrid is based on a DC and an AC bus. The study is focused on the converters connected to the DC bus. The proposed power management algorithm is implemented in a microgrid central processor. This algorithm is based on assigning several operation functions to each of the generators, loads and energy storage systems in the microgrid. A communication system is used to assign the operation functions to each of the microgrid elements. The power flows between the DC and AC buses are studied in several operation scenarios, in which the proposed control can be verified. Experimental and simulation results demonstrate that the algorithm allows to control the power dispatch inside the microgrid properly, by performing the following tasks: (1) the communications among power converters, the grid operator and intelligent loads, (2) the connection and disconnection of loads, (3) the control of the power exchange between the distributed generators and the energy storage system, (4) the compliance of the power dispatch limit set by the grid operator, (5) the synchronization with the grid and (6) the control of the voltage at the DC bus.This work has been cofinanced by the Spanish Ministry of Economy and Competitiveness (MINECO) and by the European Regional Development Fund (ERDF) under Grant ENE2015-64087-C2-2.Salas-Puente, RA.; Marzal-Romeu, S.; González-Medina, R.; Figueres Amorós, E.; Garcerá, G. (2018). An Algorithm for the Efficient Management of the Power Converters Connected to the DC Bus of a Hybrid Microgrid Operating in Grid-connection Mode. Electric Power Components and Systems. On line. https://doi.org/10.1080/15325008.2018.1469177SOn lin

    Experimental Study of a Centralized Control Strategy of a DC Microgrid Working in Grid Connected Mode

    Full text link
    [EN] The results concerning the integration of a set of power management strategies and serial communications for the efficient coordination of the power converters composing an experimental DC microgrid is presented. The DC microgrid operates in grid connected mode by means of an interlinking converter. The overall control is carried out by means of a centralized microgrid controller implemented on a Texas Instruments TMS320F28335 DSP. The main objectives of the applied control strategies are to ensure the extract/inject power limits established by the grid operator as well as the renewable generation limits if it is required; to devise a realistic charging procedure of the energy storage batteries as a function of the microgrid status; to manage sudden changes of the available power from the photovoltaic energy sources, of the load power demand and of the power references established by the central controller; and to implement a load shedding functionality. The experimental results demonstrate that the proposed power management methodology allows the control of the power dispatch inside the DC microgrid properly.This work has been cofinanced by the Spanish Ministry of Economy and Competitiveness (MINECO) and by the European Regional Development Fund (ERDF) under Grant ENE2015-64087-C2-2.Salas-Puente, RA.; Marzal-Romeu, S.; González-Medina, R.; Figueres Amorós, E.; Garcerá, G. (2017). Experimental Study of a Centralized Control Strategy of a DC Microgrid Working in Grid Connected Mode. Energies. 10(10):1-25. https://doi.org/10.3390/en10101627S1251010Baek, J., Choi, W., & Chae, S. (2017). Distributed Control Strategy for Autonomous Operation of Hybrid AC/DC Microgrid. Energies, 10(3), 373. doi:10.3390/en10030373Patrao, I., Figueres, E., Garcerá, G., & González-Medina, R. (2015). Microgrid architectures for low voltage distributed generation. Renewable and Sustainable Energy Reviews, 43, 415-424. doi:10.1016/j.rser.2014.11.054Ma, T., Yahoui, H., Vu, H., Siauve, N., & Morel, H. (2017). A Control Strategy of DC Building Microgrid Connected to the Neighborhood and AC Power Network. Buildings, 7(4), 42. doi:10.3390/buildings7020042Lin, P., Wang, P., Xiao, J., Wang, J., Jin, C., & Tang, Y. (2018). An Integral Droop for Transient Power Allocation and Output Impedance Shaping of Hybrid Energy Storage System in DC Microgrid. IEEE Transactions on Power Electronics, 33(7), 6262-6277. doi:10.1109/tpel.2017.2741262Kakigano, H., Miura, Y., & Ise, T. (2010). Low-Voltage Bipolar-Type DC Microgrid for Super High Quality Distribution. IEEE Transactions on Power Electronics, 25(12), 3066-3075. doi:10.1109/tpel.2010.2077682Salomonsson, D., Soder, L., & Sannino, A. (2008). An Adaptive Control System for a DC Microgrid for Data Centers. IEEE Transactions on Industry Applications, 44(6), 1910-1917. doi:10.1109/tia.2008.2006398Xu, L., & Chen, D. (2011). Control and Operation of a DC Microgrid With Variable Generation and Energy Storage. IEEE Transactions on Power Delivery, 26(4), 2513-2522. doi:10.1109/tpwrd.2011.2158456Nejabatkhah, F., & Li, Y. W. (2015). Overview of Power Management Strategies of Hybrid AC/DC Microgrid. IEEE Transactions on Power Electronics, 30(12), 7072-7089. doi:10.1109/tpel.2014.2384999Lu, X., Guerrero, J. M., Sun, K., & Vasquez, J. C. (2014). An Improved Droop Control Method for DC Microgrids Based on Low Bandwidth Communication With DC Bus Voltage Restoration and Enhanced Current Sharing Accuracy. IEEE Transactions on Power Electronics, 29(4), 1800-1812. doi:10.1109/tpel.2013.2266419Chen, D., & Xu, L. (2012). Autonomous DC Voltage Control of a DC Microgrid With Multiple Slack Terminals. IEEE Transactions on Power Systems, 27(4), 1897-1905. doi:10.1109/tpwrs.2012.2189441Guerrero, J. M., Vasquez, J. C., Matas, J., de Vicuna, L. G., & Castilla, M. (2011). Hierarchical Control of Droop-Controlled AC and DC Microgrids—A General Approach Toward Standardization. IEEE Transactions on Industrial Electronics, 58(1), 158-172. doi:10.1109/tie.2010.2066534Vasquez, J., Guerrero, J., Miret, J., Castilla, M., & Garcia de Vicuna, L. (2010). Hierarchical Control of Intelligent Microgrids. IEEE Industrial Electronics Magazine, 4(4), 23-29. doi:10.1109/mie.2010.938720Unamuno, E., & Barrena, J. A. (2015). Hybrid ac/dc microgrids—Part II: Review and classification of control strategies. Renewable and Sustainable Energy Reviews, 52, 1123-1134. doi:10.1016/j.rser.2015.07.186Feng, X., Shekhar, A., Yang, F., E. Hebner, R., & Bauer, P. (2017). Comparison of Hierarchical Control and Distributed Control for Microgrid. Electric Power Components and Systems, 45(10), 1043-1056. doi:10.1080/15325008.2017.1318982Kaur, A., Kaushal, J., & Basak, P. (2016). A review on microgrid central controller. Renewable and Sustainable Energy Reviews, 55, 338-345. doi:10.1016/j.rser.2015.10.141Wu, D., Tang, F., Dragicevic, T., Guerrero, J. M., & Vasquez, J. C. (2015). Coordinated Control Based on Bus-Signaling and Virtual Inertia for Islanded DC Microgrids. IEEE Transactions on Smart Grid, 6(6), 2627-2638. doi:10.1109/tsg.2014.2387357Shi, D., Chen, X., Wang, Z., Zhang, X., Yu, Z., Wang, X., & Bian, D. (2018). A Distributed Cooperative Control Framework for Synchronized Reconnection of a Multi-Bus Microgrid. IEEE Transactions on Smart Grid, 9(6), 6646-6655. doi:10.1109/tsg.2017.2717806Dou, C., Zhang, Z., Yue, D., & Zheng, Y. (2017). MAS-Based Hierarchical Distributed Coordinate Control Strategy of Virtual Power Source Voltage in Low-Voltage Microgrid. IEEE Access, 5, 11381-11390. doi:10.1109/access.2017.2717493Bracale, A., Caramia, P., Carpinelli, G., Mancini, E., & Mottola, F. (2015). Optimal control strategy of a DC micro grid. International Journal of Electrical Power & Energy Systems, 67, 25-38. doi:10.1016/j.ijepes.2014.11.003Yue, J., Hu, Z., Li, C., Vasquez, J. C., & Guerrero, J. M. (2017). Economic Power Schedule and Transactive Energy through an Intelligent Centralized Energy Management System for a DC Residential Distribution System. Energies, 10(7), 916. doi:10.3390/en10070916Gao, L., Liu, Y., Ren, H., & Guerrero, J. (2017). A DC Microgrid Coordinated Control Strategy Based on Integrator Current-Sharing. Energies, 10(8), 1116. doi:10.3390/en10081116Operating Instructions Valve Regulated Stationary Lead-Acid Batterieshttp://www.hoppecke-us.com/tl_files/hoppecke/Documents/HO-US/Operating_Instructions_sealed_stationary_lead_acid_batteries_en1111.pdfTAB Batterieshttp://www.tabspain.com/wp-content/uploads/informacion-tecnica/renovables/curvas-y-tablas/din-41773-y-din-41774-para-baterias-pzs.pdfZhao, J., & Dörfler, F. (2015). Distributed control and optimization in DC microgrids. Automatica, 61, 18-26. doi:10.1016/j.automatica.2015.07.015Eghtedarpour, N., & Farjah, E. (2014). Power Control and Management in a Hybrid AC/DC Microgrid. IEEE Transactions on Smart Grid, 5(3), 1494-1505. doi:10.1109/tsg.2013.2294275Installation, Commissioning and Operation Handbook for Gel-Vrla-Batterieshttp://www.sonnenschein.org/PDF%20files/GelHandbookPart2.pdfAlLee, G., & Tschudi, W. (2012). Edison Redux: 380 Vdc Brings Reliability and Efficiency to Sustainable Data Centers. IEEE Power and Energy Magazine, 10(6), 50-59. doi:10.1109/mpe.2012.2212607Aryani, D., & Song, H. (2016). Coordination Control Strategy for AC/DC Hybrid Microgrids in Stand-Alone Mode. Energies, 9(6), 469. doi:10.3390/en9060469Dragicevic, T., Guerrero, J. M., Vasquez, J. C., & Skrlec, D. (2014). Supervisory Control of an Adaptive-Droop Regulated DC Microgrid With Battery Management Capability. IEEE Transactions on Power Electronics, 29(2), 695-706. doi:10.1109/tpel.2013.2257857Tian, Y., Li, D., Tian, J., & Xia, B. (2017). State of charge estimation of lithium-ion batteries using an optimal adaptive gain nonlinear observer. Electrochimica Acta, 225, 225-234. doi:10.1016/j.electacta.2016.12.119Standard for Interconnecting Distributed Resources with Electric Power Systemshttp://fglongatt.org/OLD/Archivos/Archivos/SistGD/IEEE1547.pd

    Power Management of the DC Bus Connected Converters in a Hybrid AC/DC Microgrid Tied to the Main Grid

    Full text link
    [EN] In this paper, a centralized control strategy for the efficient power management of power converters composing a hybrid AC/DC microgrid is explained. The study is focused on the converters connected to the DC bus. The proposed power management algorithm is implemented in a microgrid central processor which is based on assigning several operation functions to each of the generators, loads and energy storage systems in the microgrid. The power flows between the DC and AC buses are studied in several operational scenarios to verify the proposed control. Experimental and simulation results demonstrate that the algorithm allows control of the power dispatch inside the microgrid properly by performing the following tasks: communication among power converters, the grid operator and loads; connection and disconnection of loads; control of the power exchange between the distributed generators and the energy storage system and, finally, supervision of the power dispatch limit set by the grid operator.This work has been cofinanced by the Spanish Ministry of Economy and Competitiveness (MINECO) and by the European Regional Development Fund (ERDF) under Grant ENE2015-64087-C2-2.Salas-Puente, RA.; Marzal-Romeu, S.; González-Medina, R.; Figueres Amorós, E.; Garcerá, G. (2018). Power Management of the DC Bus Connected Converters in a Hybrid AC/DC Microgrid Tied to the Main Grid. Energies. 11(4):1-21. https://doi.org/10.3390/en11040794S12111

    Practical Analysis and Design of a Battery Management System for a Grid-Connected DC Microgrid for the Reduction of the Tariff Cost and Battery Life Maximization

    Full text link
    [EN] This study is focused on two areas: the design of a Battery Energy Storage System(BESS) for a grid-connected DC Microgrid and the power management of that microgrid. The power management is performed by a Microgrid Central Controller (MGCC). A Microgrid operator provides daily information to the MGCC about the photovoltaic generation profile, the load demand profile, and the real-time prices of the electricity in order to plan the power interchange between the BESS and the main grid, establishing the desired state of charge (SOC) of the batteries at any time. The main goals of the power management strategy under study are to minimize the cost of the electricity that is imported from the grid and to maximize battery life by means of an adequate charging procedure, which sets the charging rate as a function of the MG state. Experimental and simulation results in many realistic scenarios demonstrate that the proposed methodology achieves a proper power management of the DC microgrid.This research was funded by the Spanish Ministry of Economy and Competitiveness (MINECO) and by the European Regional Development Fund (ERDF) under Grant ENE2015-64087-C2-2.Salas-Puente, RA.; Marzal-Romeu, S.; González-Medina, R.; Figueres Amorós, E.; Garcerá, G. (2018). Practical Analysis and Design of a Battery Management System for a Grid-Connected DC Microgrid for the Reduction of the Tariff Cost and Battery Life Maximization. Energies. 11(7):1-31. https://doi.org/10.3390/en11071889S13111

    Efficient Event Notification Middleware for Smart Microgrids over P2P Networks

    Full text link
    © 2018 IEEE. Personal use of this material is permitted. Permissíon from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertisíng or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.[EN] Microgrids are moving towards large-scale smart distributed networks which demand an efficient and reliable communication infrastructure to manage, control and monitor energy resources. With regard to this, publisher/subscriber eventbased middleware has become relevant for large-scale distributed time applications because it allows decouple time and space between senders and receivers. Particularly the content publish/subscribe systems over structured peer-to-peer (P2P) networks has emerged to enhance scalability and dynamism of notification middleware systems. However, this type of systems use multicast routing schemes that still generate much network traffic and as a consequence an overload of the communication channel is produced. This results in inefficient network utilization and rapid depletion of network resources leading to unreliable operations, degradation of system performance and even instability of the microgrid. In this paper, a new content-based publish/subscribe notification middleware over structured P2P systems is proposed, such that smart microgrid communication requirements are met. This proposed system organizes the publications and subscriptions in a one dimensional representation using the Hilbert space filling curve. Through this representation, an innovative routing and matching algorithms are developed. Experimental results demonstrate that the proposed publisher/subscribe system significantly enhance efficiency of the system, network performance and the use of computational resources.This work is supported by the Spanish Ministry of Economy and Competitiveness (MINECO) and the European Regional Development Fund (ERDF) under Grant ENE2015- 64087- C2- 2 R. This work is supported by the Spanish Ministry of Economy and Competitiveness (MINECO) under BES- 2013- 064539.Marzal-Romeu, S.; Salas-Puente, RA.; González-Medina, R.; Garcerá, G.; Figueres Amorós, E. (2018). Efficient Event Notification Middleware for Smart Microgrids over P2P Networks. IEEE Transactions on Smart Grid. https://doi.org/10.1109/TSG.2018.2865432

    Wage inequality, segregation by skill and the price of capital in an assignment model

    Get PDF
    Some pieces of empirical evidence suggest that in the U.S., over the last few decades, (i) wage inequality between-plants has risen much more than wage inequality within-plants and (ii) there has been an increase in the segregation of workers by skill into separate plants. This paper presents a frictionless assignment model in which these two features can be explained simultaneously as the result of the decline in the relative price of capital. Additional implications of the model regarding the skill premium and the dispersion in labor productivity across plants are also consistent with the empirical evidence. [resumen de autor

    Use of anticoagulants and antiplatelet agents in stable outpatients with coronary artery disease and atrial fibrillation. International CLARIFY registry

    Get PDF
    corecore