43 research outputs found

    Experimental all-optical one-way quantum computing

    Get PDF
    In den vergangenen Jahren hat das relative neue Feld der Quanteninformationsverarbeitung (QIP) das Interesse vieler Wissenschafter geweckt, da es schnellere Rechenleistung von Computern, absolute sichere Kommunikation sowie ein Potential zum Simulieren von komplexen quantenmechanischen Systemen verspricht. Die Essenz dieser neuen Quanteninformationstechnologie sind zwei Grundkonzepte der Quantenmechanik, nĂ€mlich die der Superposition und der VerschrĂ€nkung. Diese Dissertation enthĂ€lt die Resultate von vier verschiedenen Experimenten die alle die Demonstration eines neuen Quantencomputer-Models mit linearer Optik, des sogenannten "Einweg-Quantencomputers", zum Ziel hatten. Zu diesem Zweck wurde ein multiphotonen-verschrĂ€nkter Zustand mit Hilfe des Prozesses der spontanen parametrischen Down-Konversion in einem interferometrischen Setup erzeugt. Dieser verschrĂ€nkte Zustand agiert als eine Art Ressource, die fĂŒr Demonstrationen von neuen Quantenalgorithmen und anderen relevanten experimentellen Techniken genutzt wurde. In dieser Dissertation wird ĂŒber neue Fortschritte in der Theorie und im Experiment berichtet, unter anderem wurde zum ersten Mal eine schnelle, aktive VorwĂ€rtskopplung implementiert, die eine Realisation eines deterministischen Quantencomputer mit einer noch nicht dagewesenen Geschwindigkeit erlaubt. Weiters wurde der sogenannte Deutsch-Algorithmus mit unserem Quantencomputer implementiert. Der Quantenalgorithmus erlaubt es mit nur einer Evaluation zu erkennen, ob eine mathematische Funktion konstant oder balanciert ist, wĂ€hrend ein klassischer Algorithmus mindestens 2N−1+12^{N-1}+1 Evaluationen benötigt. In einem anderen Experiment wurde ein Quantenspiel, das sogenannte Gefangenen-Dilemma, realisiert. Ein solches Spiel ist im Prinzip die AusfĂŒhrung eines Quantenalgorithmus der aus einer bestimmten Folge aus Ein- und Zwei-qubit Quantengattern aufgebaut ist. Dieses Spiel erlaubt den individuellen Spielern ihren Strategieraum zu vergrĂ¶ĂŸern, da sie auch Superpositionen von klassischen Strategien wĂ€hlen und diese miteinander verschrĂ€nken können. Die Erfolgsfunktion des Spieles wurde fĂŒr verschiedene Strategiesets evaluiert und es konnte experimentell gezeigt werden, dass das sogenannte "Dilemma", welches in der klassischen Version des Spieles auftritt, in der Quantenwelt beseitigt werden kann. UnglĂŒcklicherweise ist DekohĂ€renz, der ungewollte Verlust von in Quantensystemen kodierter Information durch unkontrollierte Wechselwirkung mit der Umgebung, eines der Haupthindernisse fĂŒr die Realisierung eines Quantencomputers im großen Rahmen. Ein möglicher Lösungsansatz ist die Rechnung in einem sogenannten dekohĂ€renzfreien Unterraum (DFS) durchzufĂŒhren. Auf frĂŒheren Arbeiten aufbauend gelang es diese theoretischen Konzepte auf unser Einweg-Quantencomputermodel zu ĂŒbertragen und zum ersten Mal die dekohĂ€renzfreie DurchfĂŒhrung einer Rechnung zu zeigen, wĂ€hrend die Photonen starkem Phasenrauschen ausgesetzt waren. Beachtenswerter Schutz der Information konnte erreich werden, der annĂ€hernd die idealen Ergebnisse lieferte. Obwohl die Experimente in dieser Dissertation nur einen "proof-of-principle" Charakter aufweisen haben sie trotzdem große Bedeutung fĂŒr das Feld der QIP und werden hoffentlich den Weg fĂŒr weitere und aufregende Erfindungen und experimentellen Demonstrationen in der Zukunft ebnen.In recent years, the relatively new field of quantum information processing (QIP) has attracted the attention of many scientists around the world due to its promise of increased computational speed, absolute secure communication and the potential to simulate complex quantum mechanical systems. The very essence of this new quantum information technology are two concepts at the very heart of quantum mechanics, namely superposition and entanglement. The present Thesis contains the results of four different experiments that were all aimed at the demonstration of an entirely new model for quantum computing with linear optics --- the ”one-way” quantum computer. For this purpose a multi-photon entangled state of four photons has been generated via the process of spontaneous parametric down-conversion and by using an interferometric setup. This entangled state acts as a resource that allowed for novel demonstrations of quantum algorithms and relevant experimental techniques. By exploiting the advances developed in both theory and experiment, in this Thesis we report the implementation of fast, active feed-forward that allowed, for the first time, the realization of deterministic linear-optics quantum computing at an unprecedented speed. Further we were able to demonstrate the Deutsch algorithm on our one-way quantum computer, an important quantum algorithm that is capable of distinguishing whether a function is constant or balanced. Classically one needs to query the algorithm at least 2N−1+12^{N-1}+1 times for an N-bit binary input string, however, in the quantum regime, this can be done with one evaluation of the algorithm, independent of the size of the input. In another experiment we succeeded in playing an instance of a quantum game --- the so-called Prisoner's dilemma --- on our one-way quantum computer. Playing such a game is essentially the execution of a quantum algorithm made up of a distinct set of one- and two-qubit gates. This allows the individual players to increase their strategy space, as they can also choose between superposition of classical input states while their choices get entangled. Evaluating the payoff function of this game for different strategy sets, we were able to experimentally show that the so-called "dilemma", that occurs in the classical version of this game, can be resolved in the quantum domain. Unfortunately, one of the main obstacles on the road towards the realization of large-scale quantum computers is decoherence, the ubiquitous loss of information encoded in a quantum system due to its uncontrollable interaction with an environment. One possible approach to overcome this challenge is to perform the computation in a so-called decoherence-free subspace (DFS). Building up on previous work on concepts of DFS we have been able to theoretically adapt these concepts to the model of one-way quantum computing. This allowed us to demonstrate for the first time the decoherence-free execution of a one-way quantum computing protocol while the photons were exposed to severe phase-damping noise. Remarkable protection of information was accomplished, delivering nearly ideal outcomes. Although the experiments presented in this Thesis are proof-of-principle they are of great significance in the field of QIP and will hopefully pave the way for ever more exciting inventions and experimental demonstrations in the future

    Experimental realization of a simple entangling optical gate for quantum computation

    Get PDF
    Wir demonstrieren ein optisches, nicht-deterministisches CSIGN-Gatter fĂŒr Quantencomputer. Das CSIGN-Gatter ist in der Lage ursprĂŒnglich nicht verschrĂ€nkte Qubits zu verschrĂ€nken und reprĂ€sentiert daher ein elementares und wichtiges Gatter fĂŒr universelles quantencomputing. Die Wirkung des Gatters wurde mit Hilfe von Prozesstomographie vollstĂ€ndig charakterisiert und wir finden eine ProzessgĂŒte von 0.84 +/- 0.01.We present and demonstrate an all-optical, non-deterministic CSIGN-gate for quantum computation. The CSIGN-gate is capable of entangling previously unentangled qubits and therefore represents an elementary operation relevant for universal quantum computing. It can also be employed for the generation of novel multi-particle entangled states, among them the so-called cluster states. The operation of the quantum gate is completely characterized by performing quantum state and process tomography. Reconstructing the process matrix of the CSIGN-gate, we find an average gate fidelity of Favg = 0.84 +/- 0.01. The realized optical CSIGN-circuit is based on the two-photon scheme of References [14, 15], and since it requires only a single optical mode-matching condition, its construction is drasti- cally facilitated compared to previous schemes. This circuit indeed presents the simplest entangling optical gate realized to date. This thesis is written in a fully self-contained manner, introducing and establishing the required theoretical background and giving a full description of the experimental setup and procedure as well as a thorough discussion of the results and occurring problems. We propose the extension of the above scheme to generate a genuine 3-photon cluster state, which is equivalent to a Greenberger-Horne-Zeilinger-state (GHZ-state) [16], and give a short outlook on future experiments. In additional experiments the effects of temporal mode-mismatch has been studied. This was achieved with an adapted quantum teleportation experiment, showing that the fidelity of such a quantum communication protocol declines in a Gaussian fashion as a function of the temporal mode-mismatch. A simple theoretical model is developed that explains this behaviour, consistent with the experimental data

    High-fidelity entanglement swapping with fully independent sources

    Full text link
    Entanglement swapping allows to establish entanglement between independent particles that never interacted nor share any common past. This feature makes it an integral constituent of quantum repeaters. Here, we demonstrate entanglement swapping with time-synchronized independent sources with a fidelity high enough to violate a Clauser-Horne-Shimony-Holt inequality by more than four standard deviations. The fact that both entangled pairs are created by fully independent, only electronically connected sources ensures that this technique is suitable for future long-distance quantum communication experiments as well as for novel tests on the foundations of quantum physics.Comment: added technical details and extended introduction and conclusion, slightly modified the abstract, corrected a mistake in the affiliation

    Experimental realization of a quantum game on a one-way quantum computer

    Full text link
    We report the first demonstration of a quantum game on an all-optical one-way quantum computer. Following a recent theoretical proposal we implement a quantum version of Prisoner's Dilemma, where the quantum circuit is realized by a 4-qubit box-cluster configuration and the player's local strategies by measurements performed on the physical qubits of the cluster. This demonstration underlines the strength and versatility of the one-way model and we expect that this will trigger further interest in designing quantum protocols and algorithms to be tested in state-of-the-art cluster resources.Comment: 13 pages, 4 figure

    Direct detection of a single photon by humans

    Get PDF
    Despite investigations for over 70 years, the absolute limits of human vision have remained unclear. Rod cells respond to individual photons, yet whether a single-photon incident on the eye can be perceived by a human subject has remained a fundamental open question. Here we report that humans can detect a single-photon incident on the cornea with a probability significantly above chance. This was achieved by implementing a combination of a psychophysics procedure with a quantum light source that can generate single-photon states of light. We further discover that the probability of reporting a single photon is modulated by the presence of an earlier photon, suggesting a priming process that temporarily enhances the effective gain of the visual system on the timescale of seconds

    Photonic entanglement as a resource in quantum computation and quantum communication

    Full text link
    Entanglement is an essential resource in current experimental implementations for quantum information processing. We review a class of experiments exploiting photonic entanglement, ranging from one-way quantum computing over quantum communication complexity to long-distance quantum communication. We then propose a set of feasible experiments that will underline the advantages of photonic entanglement for quantum information processing.Comment: 33 pages, 4 figures, OSA styl
    corecore