43 research outputs found
Experimental all-optical one-way quantum computing
In den vergangenen Jahren hat das relative neue Feld
der Quanteninformationsverarbeitung (QIP) das Interesse vieler
Wissenschafter geweckt, da es schnellere Rechenleistung von
Computern, absolute sichere Kommunikation sowie ein Potential zum
Simulieren von komplexen quantenmechanischen Systemen verspricht.
Die Essenz dieser neuen Quanteninformationstechnologie sind zwei
Grundkonzepte der Quantenmechanik, nÀmlich die der Superposition und
der VerschrÀnkung. Diese Dissertation enthÀlt die Resultate von vier
verschiedenen Experimenten die alle die Demonstration eines neuen
Quantencomputer-Models mit linearer Optik, des sogenannten
"Einweg-Quantencomputers", zum Ziel hatten. Zu diesem Zweck wurde
ein multiphotonen-verschrÀnkter Zustand mit Hilfe des Prozesses der
spontanen parametrischen Down-Konversion in einem
interferometrischen Setup erzeugt. Dieser verschrÀnkte Zustand
agiert als eine Art Ressource, die fĂŒr Demonstrationen von neuen
Quantenalgorithmen und anderen relevanten experimentellen Techniken
genutzt wurde. In dieser Dissertation wird ĂŒber neue Fortschritte in
der Theorie und im Experiment berichtet, unter anderem wurde zum
ersten Mal eine schnelle, aktive VorwÀrtskopplung implementiert, die
eine Realisation eines deterministischen Quantencomputer mit einer
noch nicht dagewesenen Geschwindigkeit erlaubt. Weiters wurde der
sogenannte Deutsch-Algorithmus mit unserem Quantencomputer
implementiert. Der Quantenalgorithmus erlaubt es mit nur einer
Evaluation zu erkennen, ob eine mathematische Funktion konstant oder
balanciert ist, wÀhrend ein klassischer Algorithmus mindestens
Evaluationen benötigt. In einem anderen Experiment wurde
ein Quantenspiel, das sogenannte Gefangenen-Dilemma, realisiert. Ein
solches Spiel ist im Prinzip die AusfĂŒhrung eines Quantenalgorithmus
der aus einer bestimmten Folge aus Ein- und Zwei-qubit
Quantengattern aufgebaut ist. Dieses Spiel erlaubt den individuellen
Spielern ihren Strategieraum zu vergröĂern, da sie auch
Superpositionen von klassischen Strategien wÀhlen und diese
miteinander verschrÀnken können. Die Erfolgsfunktion des Spieles
wurde fĂŒr verschiedene Strategiesets evaluiert und es konnte
experimentell gezeigt werden, dass das sogenannte "Dilemma", welches
in der klassischen Version des Spieles auftritt, in der Quantenwelt
beseitigt werden kann. UnglĂŒcklicherweise ist DekohĂ€renz, der
ungewollte Verlust von in Quantensystemen kodierter Information
durch unkontrollierte Wechselwirkung mit der Umgebung, eines der
Haupthindernisse fĂŒr die Realisierung eines Quantencomputers im
groĂen Rahmen. Ein möglicher Lösungsansatz ist die Rechnung in einem
sogenannten dekohĂ€renzfreien Unterraum (DFS) durchzufĂŒhren. Auf
frĂŒheren Arbeiten aufbauend gelang es diese theoretischen Konzepte
auf unser Einweg-Quantencomputermodel zu ĂŒbertragen und zum ersten
Mal die dekohĂ€renzfreie DurchfĂŒhrung einer Rechnung zu zeigen,
wÀhrend die Photonen starkem Phasenrauschen ausgesetzt waren.
Beachtenswerter Schutz der Information konnte erreich werden, der
annÀhernd die idealen Ergebnisse lieferte. Obwohl die Experimente in
dieser Dissertation nur einen "proof-of-principle" Charakter
aufweisen haben sie trotzdem groĂe Bedeutung fĂŒr das Feld der QIP
und werden hoffentlich den Weg fĂŒr weitere und aufregende
Erfindungen und experimentellen Demonstrationen in der Zukunft
ebnen.In recent years, the relatively new field of quantum
information processing (QIP) has attracted the attention of many
scientists around the world due to its promise of increased
computational speed, absolute secure communication and the potential
to simulate complex quantum mechanical systems. The very essence of
this new quantum information technology are two concepts at the very
heart of quantum mechanics, namely superposition and entanglement.
The present Thesis contains the results of four different
experiments that were all aimed at the demonstration of an entirely
new model for quantum computing with linear optics --- the âone-wayâ
quantum computer. For this purpose a multi-photon entangled state of
four photons has been generated via the process of spontaneous
parametric down-conversion and by using an interferometric setup.
This entangled state acts as a resource that allowed for novel
demonstrations of quantum algorithms and relevant experimental
techniques.
By exploiting the advances developed in both theory and experiment,
in this Thesis we report the implementation of fast, active
feed-forward that allowed, for the first time, the realization of
deterministic linear-optics quantum computing at an unprecedented
speed. Further we were able to demonstrate the Deutsch algorithm on
our one-way quantum computer, an important quantum algorithm that is
capable of distinguishing whether a function is constant or
balanced. Classically one needs to query the algorithm at least
times for an N-bit binary input string, however, in the
quantum regime, this can be done with one evaluation of the
algorithm, independent of the size of the input. In another
experiment we succeeded in playing an instance of a quantum game ---
the so-called Prisoner's dilemma --- on our one-way quantum
computer. Playing such a game is essentially the execution of a
quantum algorithm made up of a distinct set of one- and two-qubit
gates. This allows the individual players to increase their strategy
space, as they can also choose between superposition of classical
input states while their choices get entangled. Evaluating the
payoff function of this game for different strategy sets, we were
able to experimentally show that the so-called "dilemma", that
occurs in the classical version of this game, can be resolved in the
quantum domain. Unfortunately, one of the main obstacles on the road
towards the realization of large-scale quantum computers is
decoherence, the ubiquitous loss of information encoded in a quantum
system due to its uncontrollable interaction with an environment.
One possible approach to overcome this challenge is to perform the
computation in a so-called decoherence-free subspace (DFS). Building
up on previous work on concepts of DFS we have been able to
theoretically adapt these concepts to the model of one-way quantum
computing. This allowed us to demonstrate for the first time the
decoherence-free execution of a one-way quantum computing protocol
while the photons were exposed to severe phase-damping noise.
Remarkable protection of information was accomplished, delivering
nearly ideal outcomes.
Although the experiments presented in this Thesis are
proof-of-principle they are of great significance in the field of
QIP and will hopefully pave the way for ever more exciting
inventions and experimental demonstrations in the future
Experimental realization of a simple entangling optical gate for quantum computation
Wir demonstrieren ein optisches, nicht-deterministisches CSIGN-Gatter fĂŒr Quantencomputer. Das CSIGN-Gatter ist in der Lage ursprĂŒnglich nicht verschrĂ€nkte Qubits zu verschrĂ€nken und reprĂ€sentiert daher ein elementares und wichtiges Gatter fĂŒr universelles quantencomputing. Die Wirkung des Gatters wurde mit Hilfe von Prozesstomographie vollstĂ€ndig charakterisiert und wir finden eine ProzessgĂŒte von 0.84 +/- 0.01.We present and demonstrate an all-optical, non-deterministic CSIGN-gate for quantum computation. The CSIGN-gate is capable of entangling previously unentangled qubits and
therefore represents an elementary operation relevant for universal quantum computing. It can also be employed for the generation of novel multi-particle entangled states, among
them the so-called cluster states. The operation of the quantum gate is completely characterized by performing quantum state and process tomography. Reconstructing the process matrix of the CSIGN-gate, we find an average gate fidelity of Favg = 0.84 +/- 0.01. The realized optical CSIGN-circuit is based on the two-photon scheme of References [14, 15], and since it requires only a single optical mode-matching condition, its construction is drasti-
cally facilitated compared to previous schemes. This circuit indeed presents the simplest entangling optical gate realized to date. This thesis is written in a fully self-contained manner, introducing and establishing the required theoretical background and giving a full description of the experimental setup and procedure as well as a thorough discussion of the results and occurring problems. We propose the extension of the above scheme to
generate a genuine 3-photon cluster state, which is equivalent to a Greenberger-Horne-Zeilinger-state (GHZ-state) [16], and give a short outlook on future experiments. In additional experiments the effects of temporal mode-mismatch has been studied. This was achieved with an adapted quantum teleportation experiment, showing that the fidelity of such a quantum communication protocol declines in a Gaussian fashion as a function of the temporal mode-mismatch. A simple theoretical model is developed that explains this behaviour, consistent with the experimental data
High-fidelity entanglement swapping with fully independent sources
Entanglement swapping allows to establish entanglement between independent
particles that never interacted nor share any common past. This feature makes
it an integral constituent of quantum repeaters. Here, we demonstrate
entanglement swapping with time-synchronized independent sources with a
fidelity high enough to violate a Clauser-Horne-Shimony-Holt inequality by more
than four standard deviations. The fact that both entangled pairs are created
by fully independent, only electronically connected sources ensures that this
technique is suitable for future long-distance quantum communication
experiments as well as for novel tests on the foundations of quantum physics.Comment: added technical details and extended introduction and conclusion,
slightly modified the abstract, corrected a mistake in the affiliation
Experimental realization of a quantum game on a one-way quantum computer
We report the first demonstration of a quantum game on an all-optical one-way
quantum computer. Following a recent theoretical proposal we implement a
quantum version of Prisoner's Dilemma, where the quantum circuit is realized by
a 4-qubit box-cluster configuration and the player's local strategies by
measurements performed on the physical qubits of the cluster. This
demonstration underlines the strength and versatility of the one-way model and
we expect that this will trigger further interest in designing quantum
protocols and algorithms to be tested in state-of-the-art cluster resources.Comment: 13 pages, 4 figure
Direct detection of a single photon by humans
Despite investigations for over 70 years, the absolute limits of human vision have remained unclear. Rod cells respond to individual photons, yet whether a single-photon incident on the eye can be perceived by a human subject has remained a fundamental open question. Here we report that humans can detect a single-photon incident on the cornea with a probability significantly above chance. This was achieved by implementing a combination of a psychophysics procedure with a quantum light source that can generate single-photon states of light. We further discover that the probability of reporting a single photon is modulated by the presence of an earlier photon, suggesting a priming process that temporarily enhances the effective gain of the visual system on the timescale of seconds
Photonic entanglement as a resource in quantum computation and quantum communication
Entanglement is an essential resource in current experimental implementations
for quantum information processing. We review a class of experiments exploiting
photonic entanglement, ranging from one-way quantum computing over quantum
communication complexity to long-distance quantum communication. We then
propose a set of feasible experiments that will underline the advantages of
photonic entanglement for quantum information processing.Comment: 33 pages, 4 figures, OSA styl