15 research outputs found

    Total energies from variational functionals of the Green function and the renormalized four-point vertex

    Get PDF
    We derive variational expressions for the grand potential or action in terms of the many-body Green function GG which describes the propagation of particles and the renormalized four-point vertex Γ\Gamma which describes the scattering of two particles in many-body systems. The main ingredient of the variational functionals is a term we denote as the Ξ\Xi-functional which plays a role analogously to the usual Φ\Phi-functional studied by Baym (G.Baym, Phys.Rev. 127, 1391 (1962)) in connection with the conservation laws in many-body systems. We show that any Ξ\Xi-derivable theory is also Φ\Phi-derivable and therefore respects the conservation laws. We further set up a computational scheme to obtain accurate total energies from our variational functionals without having to solve computationally expensive sets of self-consistent equations. The input of the functional is an approximate Green function G~\tilde{G} and an approximate four-point vertex Γ~\tilde{\Gamma} obtained at a relatively low computational cost. The variational property of the functional guarantees that the error in the total energy is only of second order in deviations of the input Green function and vertex from the self-consistent ones that make the functional stationary. The functionals that we will consider for practical applications correspond to infinite order summations of ladder and exchange diagrams and are therefore particularly suited for applications to highly correlated systems. Their practical evaluation is discussed in detail.Comment: 21 pages, 10 figures. Physical Review B (accepted

    Trauma Hemorrhagic Shock-Induced Lung Injury Involves a Gut-Lymph-Induced TLR4 Pathway in Mice

    Get PDF
    Injurious non-microbial factors released from the stressed gut during shocked states contribute to the development of acute lung injury (ALI) and multiple organ dysfunction syndrome (MODS). Since Toll-like receptors (TLR) act as sensors of tissue injury as well as microbial invasion and TLR4 signaling occurs in both sepsis and noninfectious models of ischemia/reperfusion (I/R) injury, we hypothesized that factors in the intestinal mesenteric lymph after trauma hemorrhagic shock (T/HS) mediate gut-induced lung injury via TLR4 activation.The concept that factors in T/HS lymph exiting the gut recreates ALI is evidenced by our findings that the infusion of porcine lymph, collected from animals subjected to global T/HS injury, into naïve wildtype (WT) mice induced lung injury. Using C3H/HeJ mice that harbor a TLR4 mutation, we found that TLR4 activation was necessary for the development of T/HS porcine lymph-induced lung injury as determined by Evan's blue dye (EBD) lung permeability and myeloperoxidase (MPO) levels as well as the induction of the injurious pulmonary iNOS response. TRIF and Myd88 deficiency fully and partially attenuated T/HS lymph-induced increases in lung permeability respectively. Additional studies in TLR2 deficient mice showed that TLR2 activation was not involved in the pathology of T/HS lymph-induced lung injury. Lastly, the lymph samples were devoid of bacteria, endotoxin and bacterial DNA and passage of lymph through an endotoxin removal column did not abrogate the ability of T/HS lymph to cause lung injury in naïve mice.Our findings suggest that non-microbial factors in the intestinal mesenteric lymph after T/HS are capable of recreating T/HS-induced lung injury via TLR4 activation

    The Mars Exploration Rover Instrument Positioning System

    No full text
    During Mars Exploration Rover (MER) surface operations, the scientific data gathered by the in situ instrument suite has been invaluable with respect to the discovery of a significant water history at Meridiani Planum and the hint of water processes at work in Gusev Crater. Specifically, the ability to perform precision manipulation from a mobile platform (i.e., mobile manipulation) has been a critical part of the successful operation of Spirit and Opportunity rovers. As such, this paper describes the MER Instrument Positioning System that allows the in situ instruments to operate and collect their important science data using a robust, dexterous robotic arm combined with visual target selection and autonomous software functions

    The Phoenix Mars Lander Robotic Arm

    No full text
    The Phoenix Mars Lander Robotic Arm (RA) has operated for over 150 sols since the Lander touched down on the north polar region of Mars on May 25, 2008. During its mission it has dug numerous trenches in the Martian regolith, acquired samples of Martian dry and icy soil, and delivered them to the Thermal Evolved Gas Analyzer (TEGA) and the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA). The RA inserted the Thermal and Electrical Conductivity Probe (TECP) into the Martian regolith and positioned it at various heights above the surface for relative humidity measurements. The RA was used to point the Robotic Arm Camera to take images of the surface, trenches, samples within the scoop, and other objects of scientific interest within its workspace. Data from the RA sensors during trenching, scraping, and trench cave-in experiments have been used to infer mechanical properties of the Martian soil. This paper describes the design and operations of the RA as a critical component of the Phoenix Mars Lander necessary to achieve the scientific goals of the mission

    TRIF and Myd88 deficiency confer full and partial protection against T/HS lymph induced microvascular permeability.

    No full text
    <p>A) WT and Myd88<sup>−/−</sup> and B) WT and TRIF<sup>mut</sup> mice were infused with porcine T/SS and T/HS lymph for 3 hr and lung permeability to EBD was performed. Data expressed as mean ± SE (n = 5–8 mice/ group).</p

    TLR4 deficiency reduces T/HS lymph induced pulmonary iNOS protein levels.

    No full text
    <p>A) and B) Western blot of iNOS in lung WCEs of WT and TLR4<sup>mut</sup> mice infused with porcine T/SS and T/HS lymph for 3 hr. B) Densitometry was performed to quantify iNOS and total p42/p44 MAPK expression. Data expressed as mean ± SE (n = 4–7 mice/group).</p
    corecore