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We derive variational expressions for the grand potential or action in terms of the many-body Green function
G which describes the propagation of particles and the renormalized four-point vertex � which describes the
scattering of two particles in many-body systems. The main ingredient of the variational functionals is a term
we denote as the �-functional which plays a role analogously to the usual �-functional studied by Baym �G.
Baym, Phys. Rev. 127, 1391 �1962�� in connection with the conservation laws in many-body systems. We
show that any �-derivable theory is also �-derivable and therefore respects the conservation laws. We further
set up a computational scheme to obtain accurate total energies from our variational functionals without having
to solve computationally expensive sets of self-consistent equations. The input of the functional is an approxi-

mate Green function G̃ and an approximate four-point vertex �̃ obtained at a relatively low computational cost.
The variational property of the functional guarantees that the error in the total energy is only of second order
in deviations of the input Green function and vertex from the self-consistent ones that make the functional
stationary. The functionals that we will consider for practical applications correspond to infinite order summa-
tions of ladder and exchange diagrams and are therefore particularly suited for applications to highly correlated
systems. Their practical evaluation is discussed in detail.

DOI: 10.1103/PhysRevB.74.195105 PACS number�s�: 71.10.�w, 71.15.Nc, 31.15.Lc

I. INTRODUCTION

Total energy calculations play an important role in con-
densed matter physics and quantum chemistry. For solid state
physicists they are essential in predicting structural changes
and bulk moduli in solids. In chemistry molecular bonding
curves and potential energy surfaces are essential to under-
stand phenomena such as molecular dissociation and chemi-
cal reactions. However, accurate total energy calculations are
notoriously difficult and computationally demanding. In
quantum chemistry there are advanced wave function meth-
ods such as configuration interaction and coupled cluster
theory1 to calculate energies but they can only be applied to
relatively small molecules. In solid state physics most total
energy calculations for crystals or surfaces are based on den-
sity functional theory2 where the density functionals are
mostly based on the local density approximation �LDA� and
generalized gradient approximations �GGA�.3 These func-
tionals have had great success but there are many cases
where the functionals fail, in which case there is no clear
systematic route to improvement. We have therefore recently
advanced a different scheme which involves variational en-
ergy functionals of the many-body Green function and ap-
plied it successfully to calculate total energies of atoms,
molecules,4–8 and the electron gas.9 A variety of such func-
tionals can be systematically constructed using diagrammatic
perturbation theory in which the different functionals corre-
spond to different levels of perturbation theory. For these
functionals we use input Green functions that are relatively
easy to obtain at low computational cost, for instance from a
local density or Hartree-Fock calculation. The variational
property of the functional then assures that the errors in the
energy are only of second order in the difference between
our approximate Green function and the actual Green func-
tion that makes the functional stationary. This is the essential

feature that allows one to obtain accurate total energies at a
relatively low computational cost.8 The remaining question
is then how to select approximate variational functionals that
yield good total energies.

In a diagrammatic expansion in many-body perturbation
theory the building blocks are the Green function line G,
which describes the propagation of particles and holes, and
the interaction line v which in electronic systems is repre-
sented by the Coulomb repulsion between the electrons.
From this diagrammatic structure one can proceed to con-
struct variational functionals in several ways. First of all we
can renormalize the Green function lines. This leads to a
functional that has been studied by Luttinger and Ward10 and
leads to a functional we will call the �-functional ��G ,v�,
depending on the dressed Green function and the bare two-
particle interaction v. The Luttinger-Ward functional has
been applied, with great success, to the calculation of total
energies of the electron gas,9,18 and atoms and
molecules.4–8,13 This type of functional has also received
considerable attention for Hubbard lattice type systems.11–16

Apart from renormalization of the Green function lines, we
can also decide to renormalize the interaction lines by replac-
ing the bare interaction by a dynamically screened one, usu-
ally denoted by W. This leads to the functional ��G ,W� that
was investigated in a paper by Hedin17 and later more com-
pletely by Almbladh et al.9,18 and which has been applied
with success to calculations of the total energy of the elec-
tron gas9,18 and atoms.5 This type of functional has also re-
ceived considerable attention in the dynamical mean field
theory �DMFT� community.19–22 The natural place to use this
functional is in extended systems in which screening of the
long range Coulomb interaction is essential. Finally there is
also the possibility to renormalize the four-point vertices and
replace them by a renormalized four-point vertex �. In this
work we will concentrate on this type of functional.
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The natural place for variational functionals of the Green
function G and the four-point vertex � is in systems where
short range correlations play an important role such as in
highly correlated systems. Such a type of theory was recently
discussed in the work of Janiš11,12 on the Hubbard model in
which it was demonstrated how to derive the so-called par-
quet approximation from a functional of the Green function
and the four-point vertex. Furthermore Katsnelson and
Lichtenstein23 have considered the electronic structure of
correlated metals in which the building blocks of the theory
are an approximate T matrix and a bare or noninteracting
Green function �or a bare Green function in an effective cor-
related medium when using DMFT24�. For describing the
structural properties of such materials it would therefore be
of great importance to be able to calculate the total energy
from variational energy expressions in terms of the Green
function and the four-point vertex where we use an approxi-
mate G and � as an input. The variational property then
guarantees that the errors in the energy are only of second
order in the deviations of the input Green function and vertex
from the true quantities that make the functional stationary.

The construction of energy functionals in terms of G and
� is most naturally done by the use of the Hugenholtz dia-
gram technique25–28 which has the bare four-point vertex as a
diagrammatic building block. This procedure has been car-
ried out in the early 1960s by De Dominicis29,30 and later in
more generality by De Dominicis and Martin31,32 and leads
to a functional we will call the �-functional ��G ,��. In the
latter works the derivation has been carried out for a very
general many-body system with not only one- and two-body
interactions but also with 1

2-body and 3
2-body interactions

that describe Bose-condensed and superconducting phases.
Unfortunately this leads to rather involved equations and dis-
guises the simpler case in which there are only one- and
two-body interactions. For instance, in the general Bose-
condensed and superconducting case no particle-particle and
particle-hole contributions to the four-point vertex can be
distinguished. The work of De Dominicis and Martin was
aimed at demonstrating that one could express all thermody-
namic quantities completely in terms of distribution func-
tions rather than at a practical application of the formalism.
In their work there is, therefore, no discussion of approxi-
mate functionals and of ways of evaluating them. However,
nowadays the functionals can be subjected to numerical
computation and it is therefore timely to discuss the formal-
ism from this point of view and to present computational
schemes to evaluate the functionals to calculate total ener-
gies. This is exactly the purpose of this work.

If we consider the first of the two papers of De Dominicis
and Martin31 we see that they use a purely algebraic ap-
proach to construct their functional which is not capable of
displaying its full structure. Their second paper32 uses a
purely diagrammatic approach to derive in much more detail
the structure of the functional but the derivation is quite dif-
ficult due to numerous intricate topological theorems that
need to be discussed in order to avoid double counting of the
diagrams. However, we found that a combination of both
methods discussed in these two papers leads to a much
quicker derivation of the final results. Therefore, in this work
we derive, in an as simple as possible manner, a variational

energy or action functional for normal systems using a
purely algebraic method in combination with a diagrammatic
analysis. We use, however, one generalization of the formal-
ism of De Dominicis and Martin: since the Green functions
are generated by differentiation of our functionals with re-
spect to time-nonlocal potentials, the most natural frame-
work to use is the Keldysh Green function technique.33–36 We
therefore consider generally time-dependent systems that are
initially in thermodynamic equilibrium. This has two other
advantages. First it allows for an elegant discussion of con-
servation laws which, as was shown by Baym,37 are closely
connected to � derivability. Such conservation laws were
earlier discussed for variational energy and action function-
als within the � and � formalism in connection with time-
dependent density-functional theory.38 In particular we will
show in this paper that also �-derivable theories are conserv-
ing. Second, the use of finite temperature allows for an el-
egant treatment of the boundary conditions on the Green
functions. These are, for instance, essential in going from the
equations of motion for the Green function to the Dyson
equation which will play an important role in our deriva-
tions.

The paper is divided as follows. We first discuss some
definitions that form the basis of our subsequent analysis. We
then derive self-consistent equations that relate the Green
function and the renormalized four-point vertex. Then we
provide a general construction of the variational functional
using purely algebraic methods and we subsequently analyze
the structure of the functional using diagrammatic methods.
We then briefly discuss the conserving properties of the func-
tional. Finally we discuss approximate functionals with de-
tails for their practical evaluation and present our conclu-
sions and outlook.

II. DEFINING EQUATIONS

In the following we will consider a many-body system
initially in thermodynamic equilibrium. At an initial time t0
the system is subjected to a time-dependent external field.
The Hamiltonian of the system in a time-dependent external
potential w�xt� is �in atomic units� given by

Ĥ�t� = ĥ�t� + V̂ , �1�

where in the usual second quantization notation the one- and
two-body parts of the Hamiltonian are given by

ĥ�t� =� dx�̂†�x�h�xt��̂�x� , �2�

V̂ =
1

2
� dxdx�v�r,r���̂†�x��̂†�x���̂�x���̂�x� . �3�

Here x= �r ,�� is a space-spin coordinate. The two-body in-
teraction will usually be taken to be a Coulombic repulsion,
i.e., v�r ,r��=1/ �r−r��. The one-body part of the Hamil-
tonian has the explicit form
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h�xt� = − 1
2�2 + w�xt� − � . �4�

We further introduced the chemical potential � in the one-
body part of the Hamiltonian of Eq. �4� in anticipation of a
finite temperature treatment of the system. We first consider

the expectation value of an operator Ô for the case that the
system is initially in an equilibrium state before a certain

time t0. For t	 t0 the expectation value of operator Ô in the

Schrödinger picture is then given by �Ô�=Tr	
̂Ô
, where 
̂

=e−�Ĥ0 /Tr e−�Ĥ0 is the density matrix and Ĥ0 is the time-
independent Hamiltonian that describes the system before
the perturbation is switched on. We further defined �
=1/kBT, with kB the Boltzmann constant, to be the inverse
temperature, and the trace involves a summation over a com-
plete set of states in the Hilbert space. After we switch on the
field the expectation value becomes a time-dependent quan-
tity given by

�Ô��t� = Tr	
̂ÔH�t�
 , �5�

where ÔH�t�= Û�t0 , t�Ô�t�Û�t , t0� is the operator in the

Heisenberg picture. The evolution operator Û of the system
is defined as the solution to the equations

i�tÛ�t,t�� = Ĥ�t�Û�t,t�� , �6�

i�t�Û�t,t�� = − Û�t,t��Ĥ�t�� , �7�

with the boundary condition Û�t , t�=1. The formal solution
of Eq. �6� can be obtained by integration to yield the time-

ordered expression Û�t , t��=T exp�−i�t�
t d�Ĥ���� for t
 t�

with a similar expression with antichronological time-

ordering for t�
 t. The operator e−�Ĥ0 can now be regarded

as an evolution operator in imaginary time, i.e., Û�t0

− i� , t0�=e−�Ĥ0, if we define Ĥ�t� to be equal to Ĥ0 on the
contour running straight from t0 to t0− i� in the complex
time plane. We can therefore rewrite our expression for the
expectation value as

�Ô��t� =
Tr	Û�t0 − i�,t0�Û�t0,t�ÔÛ�t,t0�


Tr	Û�t0 − i�,t0�

. �8�

If we read the time arguments of the evolution operators in
the numerator of this expression from left to right we may
say that the system evolves from t0 along the real time axis to

t after which the operator Ô acts. Then the system evolves
back along the real axis from time t to t0 and finally parallel
to the imaginary axis from t0 to t0− i� �see Fig. 1�. This
observation motivates us to define the following action func-
tional �compare with the action functionals used in Refs. 37
and 39�

Y = i ln Tr	Û�t0 − i�,t0�
 , �9�

where we define the evolution operator on the contour as

Û�t0 − i�,t0� = TC exp�− i� dtĤ�t�
 . �10�

Here the time integral is taken on the contour displayed in
Fig. 1 and TC denotes time-ordering along the contour.34,36

When we evaluate this quantity for the equilibrium system
we see that

iY = − ln Tr	e−�Ĥ0
 = �� , �11�

where � is the grand potential. Therefore the total energy E
of the system is obtained from the zero-temperature limit

lim
T→0

iY

�
= lim

T→0
� = E − �N , �12�

where N denotes the number of particles in the system. Let
us now see how this functional can be used as a generating
functional by making variations with respect to parameters in
the Hamiltonian. To do this one needs to consider changes in

the evolution operator Û which are readily evaluated using
Eqs. �6� and �7�. For instance, when we make a perturbation

�V̂�t� in the Hamiltonian we have using Eq. �6�,

i�t�Û�t,t�� = �V̂�t�Û�t,t�� + Ĥ�t��U�t,t�� , �13�

with a similar differential equation with respect to t� and

boundary condition �Û�t , t�=0. The solution to this equation
is given by

�Û�t,t�� = − i�
t�

t

d�Û�t,���V̂���U��,t�� , �14�

from which variations in the action can be calculated. For
instance, if we choose the perturbation to be a time-
dependent and spatially nonlocal potential of the form

�V̂�t� =� dx1dx2�u�x1,x2,t��̂†�x1��̂�x2� , �15�

we obtain the time-dependent one-particle density matrix as
a functional derivative with respect to Y,

FIG. 1. The Keldysh contour drawn in the complex time
plane.
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��̂†�x1��̂�x2���t� =
�Y

�u�x1,x2,t�
. �16�

Similarly, when we consider a time-dependent two-body po-
tential of the form

�V̂�t� =� d�x1x2x3x4��V�x1x2x3x4,t�

� �̂†�x1��̂†�x2��̂�x3��̂�x4� , �17�

we obtain the time-dependent two-particle density matrix as
a derivative

��̂†�x1��̂†�x2��̂�x3��̂�x4���t� =
�Y

�V�x1x2x3x4,t�
. �18�

Note that in order to derive Eqs. �16� and �18� we had to
make variations �u and �V for time variables on the contour.
After the variation is made all observables are, of course,
evaluated for physical quantities that are the same on the
upper and lower branch of the contour. In the remainder of
the paper we will heavily use the action functional as a gen-
erating functional for the many-body Green functions. To do
this we have to generalize the time-local potentials u and V
to time-nonlocal ones, such that the derivatives of Y with
respect to these potentials become time-ordered expectation
values that we can identify with the one- and two-particle
Green functions G and G2. By a subsequent Legendre trans-
form we then can construct a variational functional in terms
of G and G2. Let us start out by defining the n-body Green
function as

Gn�1 . . . n,1� . . . n��

= �− i�n�TC��̂H�1� . . . �̂H�n��̂H
† �1�� . . . �̂H

† �n���� ,

�19�

where we introduced the short notation 1= �x1t1� and where
we defined the expectation value of a Heisenberg operator as

�Ô� =
Tr	Û�t0 − i�,t0�ÔH�t�


Tr	Û�t0 − i�,t0�

. �20�

The many-body Green functions satisfy the following hierar-
chy equations40,41 which connect the n-body Green function
to the n+1 and n−1 body Green function:

�i�t1
− h�1��Gn�1 . . . n,1� . . . n��

= �
j=1

n

��1j���− 1�n−jGn−1�2 . . . n,1� . . . j� − 1, j� + 1 . . . n��

− i� dxv�x1,x�Gn+1�1 . . . n,xt1,xt1
+,1� . . . n�� . �21�

These equations follow directly from the definition of the
Green functions, the anticommutation relations of the field
operators, and the equations of motion of the evolution op-
erators in Eqs. �6� and �7�. The Green functions are defined
for time arguments on the time contour. Such contour Green
functions were first introduced by Keldysh33 and are often

denoted as Keldysh Green functions34–36 and play an impor-
tant role in nonequilibrium systems. The one-particle Green
function G1=G obeys the boundary condition G�x1t0 ,2�
=−G�x1t0− i� , t2� as is readily derived using the cyclic prop-
erty of the trace. The property G�1,x2t0�=−G�1,x2t0− i��
for the other argument is likewise easily verified as well as
similar relations for the n-body Green functions. These
boundary conditions are sometimes referred to as the Kubo-
Martin-Schwinger conditions40,42 and are essential in solving
the equations of motion for the Green function.36 After these
preliminaries we are now ready to derive the equations that
connect the one- and two-body Green functions which we
will use to construct the variational functional Y.

III. RELATION BETWEEN THE FOUR-POINT
VERTEX AND THE GREEN FUNCTION

In order to derive a variational energy functional in terms
of the Green function G and the renormalized four-point ver-
tex � we start out by deriving coupled equations between
these quantities, similar to the familiar Hedin equations.17

However, instead of the usual coupled equations in terms of
the Green function G and the screened interaction W we have
equations in terms of the Green function G and the four-
point vertex �. Since our aim is to derive equations in terms
of the renormalized four-point vertex it is advantageous to
write our equations in terms of the bare four-point vertex
first. This is most conveniently done within the Hugenholtz
diagram technique.25–28 We will therefore first rewrite the
two-particle interaction as a four-point function as

V̂ =
1

2
� dxdx�v�r,r���̂†�x��̂†�x���̂�x���̂�x�

=
1

4
� d�x1x2x3x4�V0�x1x2x3x4�

� �̂†�x1��̂†�x2��̂�x3��̂�x4� , �22�

where we defined

V0�x1x2x3x4� = v�r1,r2����x2 − x3���x1 − x4�

− ��x1 − x3���x2 − x4�� . �23�

This term is used as a basic entity in the Hugenholtz dia-
gram technique and is displayed pictorially in Fig. 2. We
now make use of the fact that the Green function can be
obtained as a derivative of the functional

iY�u� = − ln Tr	U�u��t0 − i�,t0�
 �24�

with respect to a nonlocal �in space and time� potential
u�12�, where

FIG. 2. Four-point vertex corresponding to the Hugenholtz dia-
gram technique.
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Û�u��t0 − i�,t0� = TC exp�− i� dtĤ�t�

− i� d1� d2�̂†�x1�u�12��̂�x2�
 .

�25�

Since this expression contains a double time integral one has
to define precisely how the time ordering in this equation is
defined. This leads to often overlooked subtleties the details
of which are presented in Appendix A where we further
show that

G�12� = i
�Y�u�
�u�21�

. �26�

By a subsequent differentiation �see Appendix A� we can
obtain the two-particle Green function as

G2�1234� = −
�G�14�
�u�32�

+ G�14�G�23� . �27�

If the derivatives are taken at u=0 we obtain the Green func-
tions as defined in Eq. �19�. If the derivative is taken at
nonzero u then there is no direct relation between the Green
function and expectation values of time-ordered field opera-
tors. However, as shown in Appendix A the Green functions
in the presence of a nonlocal potential u still satisfy a set of
hierarchy equations. The first ones are

�i�t1
− h�1��G�11�� = ��11�� +� d2�u�12� + ��12��G�21�� ,

�28�

�− i�t1�
− h�1���G�11�� = ��11�� +� d2G�12�

��u�21�� + �̃�21��� , �29�

where we defined the self-energy operator � and its adjoint

�̃ by the equations

� d2��12�G�21�� = −
i

2
� d�234�V�1234�G2�4321�� ,

�30�

� d2G�12��̃�21�� = −
i

2
� d�234�G2�1234�V�4321�� .

�31�

Here we defined

V�1234� = v�r1,r2���t1,t2����23���14� − ��13���24���1234

�32�

where ��ij�=��ti , tj���xi−x j� and �1234=1 if t1
 t2
 t3
 t4

�on the contour� and zero otherwise. The function �1234
therefore ensures that the operators have the proper time-
ordering before the equal time limits, described by the �
functions, are taken. In the next section we will also allow

for more general forms of V�1234� in order to obtain the
two-particle Green function as a functional derivative with
respect to V. In order to derive a self-consistent set of equa-
tions we have to give a relation between the two-particle

Green function and the self-energy. We first note that �= �̃.
This can be derived by applying to Eq. �31� the operator
�i�t1

−h�1�� and to Eq. �30� the operator �−i�t1�
−h�1���. With

the use of the equations of motion of the one- and two-
particle Green functions from Eq. �21� the result then fol-
lows. As a remark we note that for more general initial con-

ditions � is no longer equal to �̃.43 From the equality of �

and �̃ it follows that the Green function has a unique inverse
given by the Dyson equation

G−1�12� = �i�t1
− h�1����12� − u�12� − ��12�

= G0
−1�12� − u�12� − ��12� �33�

which satisfies

� d2G−1�12�G�21� =� d2G�12�G−1�21�� = ��11�� .

�34�

For later reference we also defined the inverse G0
−1 of the

noninteracting Green function in Eq. �33�. We now define the
renormalized four-point vertex by the equation

G2�1234� = G�14�G�23� − G�13�G�24�

+� d�5678�G�15�G�27���5786�G�83�G�64� .

�35�

This expression is displayed pictorially in Fig. 3. The four-
point vertex � has the interpretation of a renormalized inter-
action that describes the scattering of two particles and will
play an important role in our energy functional later. By
differentiating Eq. �34� with respect to the nonlocal potential
u and using Eqs. �27�, �30�, and �33� we can readily derive
�along the lines of Ref. 17� the equations

��18� = − i� d�23�V�1238�G�32�

−
i

2
� d�234567�V�1234�G�36�

� G�45���5678�G�72� �36�

and

FIG. 3. Definition of the renormalized four-point vertex �.
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��1234� = −
���14�
�G�32�

+� d�5678�
���14�
�G�65�

G�67�G�85���7238� .

�37�

Equations �36� and �37�, which are pictorially displayed in
Fig. 4, represent a self-consistent set of equations that gen-
erate the perturbation series for the self-energy ��G ,V� in
terms of the Green function and the interaction V. For in-
stance, if one starts by taking �=0 in Eq. �36�, then from Eq.
�37� one obtains an improved four-point vertex � which in-
serted in Eq. �36� leads to an improved self-energy. It should
be noted that at a correlated level the simultaneous solution
of these equations is in general computationally demand-
ing.44 Moreover the self-consistent vertex and self-energy are
not related by a Ward-identity37,46 although the response
functions calculated from the nonequilibrium Green function
in external fields still satisfy the f sum rule.45,46 However, as
explained in the introduction, our aim is to obtain total ener-
gies. This can be done without solving the computationally
demanding Eqs. �36� and �37� by using approximate Green
functions and four-point vertices in the variational functional
that we will construct in the next section.

IV. CONSTRUCTION OF A VARIATIONAL FUNCTIONAL

In this section we will construct a variational energy or
action functional of the dressed Green function G and the
renormalized four-point vertex �. The main reason for inves-
tigating such a functional is to obtain in a simple way con-
tributions to the total energy that correspond to the infinite
summation of ladder-type diagrams. Such diagrams corre-
spond to an infinite number of terms in the � or
�-functional. In the new variables G and � we have a cor-
responding functional ��G ,��. In order to derive the
�-functional, which we will denote as the De Dominicis
functional,29–32,47 we start with the action functional

iY�u,V� = − ln Tr	U�u,V��t0 − i�,t0�
 , �38�

which we will regard as a functional of u and V, where we
defined

Û�u,V��t0 − i�,t0� = TC exp�− i� dtĤ0�t�

− i� d1� d2�̂†�x1�u�12��̂�x2�

−
i

4
� d�1234�V�1234�

� �̂†�x1��̂†�x2��̂�x3��̂�x4�
 . �39�

Here V�1234� is a general time-dependent two-body interac-
tion which we require to have the following symmetry prop-
erties:

V�1234� = − V�2134� = − V�1243� = V�2143� . �40�

This will guarantee that the Feynman rules of the Hugenholtz
diagram method are satisfied. Eventually, when we have de-
rived our equations, we will set V equal to expression V0 of
Eq. �32�. To give precise meaning to expression �39� we
again have to specify how the time ordering is defined when
we expand the exponent. This is done in Appendix B where
we show that

i
�Y

�u�21�
= G�12� , �41�

i
�Y

�V�4321�
= −

i

4
G2�1234� . �42�

In Appendix B it is further demonstrated that these one- and
two-particle Green functions, even in the presence of time
nonlocal fields, are related by the first equation of motion of
the Martin-Schwinger hierarchy. By a Legendre transform
we can now construct a functional of G and G2,

F�G,G2� = iY�u�G,G2�,V�G,G2�� −� d�12�u�21�G�12�

+
i

4
� d�1234�V�4321�G2�1234� , �43�

where we now regard u and V as functionals of G and G2.
This functional satisfies

�F

�G�12�
= − u�21� , �44�

�F

�G2�1234�
=

i

4
V�4321� . �45�

Therefore the functional

iY�G,G2� = F�G,G2�+� d�12�u�21�G�12�

−
i

4
� d�1234�V�4321�G2�1234� �46�

for fixed u and V is a stationary functional of G and G2, i.e.,

FIG. 4. Graphical display of the equations that relate the self-
energy � to the vertex �.
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i
�Y

�G�12�
= 0, �47�

i
�Y

�G2�1234�
= 0, �48�

where we will eventually be interested in the case u=0 and
V=V0. We can now modify the functional Y�G ,G2� such
that, rather than the two-particle Green function, we can use
the renormalized four-point vertex � as a basic variable. For
this purpose we use Eq. �35� which is displayed pictorially in
Fig. 3 and which gives G2�G ,�� as an explicit functional of
G and �. We then define the functional

H�G,�� = F�G,G2�G,��� , �49�

which is a functional of the Green function G and the four-
point vertex �. Then for fixed � we have

�H

�G�12�
=

�F

�G�12�
+� d�3456�

�F

�G2�3456�
�G2�3456�

�G�12�

= − u�21� − ��21� − �̃C�21� , �50�

where we defined

��12� = �HF�12� + �C�12� , �51�

�HF�14� = − i� d�23�V�1234�G�32� , �52�

�C�18� = −
i

2
� d�234567�V�1234�G�36�

� G�45���5678�G�72� , �53�

�̃C�18� = −
i

2
� d�234567���1234�G�36�

� G�45�V�5678�G�72� . �54�

From Eq. �36� we recognize these terms as self-energy dia-
grams. They are displayed graphically in Fig. 5. We recog-
nize the first term in Eq. �52� for V=V0 as the Hartree-Fock
part of the self-energy. The second part �C of Eq. �53� in-
volving the four-point vertex � describes the time-nonlocal

correlation part of the self-energy. The third part �̃C in Eq.
�54� is the adjoint correlation part of the self-energy. As men-
tioned earlier we can show from the Kubo-Martin-Schwinger
boundary conditions for a system initially in thermodynamic

equilibrium that �̃C�12�=�C�12�. However, in the following
we will keep the tilde on the self-energy to keep track of the
origin of this term. For fixed G we can also calculate the
derivative with respect to � for which we have

�H

���1234�
=� d�5678�

�F

�G2�5678�
�G2�5678�
���1234�

=
i

4
Ṽ�4321� ,

�55�

where we defined

Ṽ�1234� =� d�5678�G�15�G�26�V�5678�G�73�G�84� ,

�56�

which is simply a bare vertex dressed with two ingoing and
two outgoing dressed Green function lines. Using the func-
tional H we can now regard the expression iY of Eq. �46� as
a functional of G and �, i.e.,

iY�G,�� = H�G,�� +� d�12�u�21�G�12�

−
i

4
� d�1234�V�4321�G2�G,���1234� ,

�57�

which is a stationary functional of G and � for fixed u and V.
We have thus achieved our first goal and expressed the action
iY as functional of G and �. Our next step is to specify the
functional H in more detail. The variations in H are given by
the expression

�H =� d�12��− u�21� − ��21� − �̃C�21���G�12�

+
i

4
� d�1234�Ṽ�4321����1234�

=� d�12��G−1�21� − G0
−1�21� − �̃C�21���G�12�

+
i

4
� d�1234�Ṽ�4321����1234� , �58�

and hence we see that it is convenient to split up H as fol-
lows:

FIG. 5. Graphical display of the self-energy terms. The small
dot denotes the bare vertex V and the big square denotes the full
four-point vertex �.
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H�G,�� = − tr	ln�− G−1�
 − tr	G0
−1�G − G0�
 − ��G,�� .

�59�

This equation defines a new functional ��G ,�� which will
be the central object for the rest of the paper. In Eq. �59� we
further defined the trace tr �not to be confused with the ther-
modynamic trace Tr� as

tr A =� d1A�1,1+� , �60�

where 1+ denotes that time t1 is approached from above on
the contour. The definition of the �-functional in Eq. �59� is
convenient because then we have

�H

�G�12�
= G−1�21� − G0

−1�21� −
��

�G�12�
, �61�

�H

���1234�
= −

��

���1234�
, �62�

and therefore from Eq. �58� we see that the functional
��G ,�� satisfies the equations

��

���1234�
= −

i

4
Ṽ�4321� , �63�

��

�G�12�
= �̃C�21� . �64�

The functional � is therefore directly related to the correla-
tion part of the self-energy. To describe the correlations in
the system it is therefore necessary to further study the struc-
ture of the �-functional, which we will do in detail in the
next section.

Note that in Eq. �59� we could also have written ln�G−1�
rather than ln�−G−1�. These terms differ only by a �possibly
infinite� constant and depend on the definition of the branch
cut of the logarithm. However, the particular definition here
reduces properly to the grand potential of the noninteracting
system when the interactions are switched off.10 The final De
Dominicis functional �for u=0� is thus given from Eqs. �57�
and �59� by

iY�G,�� = − tr	ln�− G−1�
 − tr	G0
−1�G − G0�
 − ��G,��

−
i

4
� d�1234�V0�1234�G2�G,���4321� . �65�

We can check that in the absence of interactions we have
iY =−tr ln	−G0

−1
, which yields the grand potential of the
noninteracting system, as we will discuss in more detail later.
Let us now check the variational property. The derivatives of
iY with respect to G and � are given by

i
�Y

���1234�
=

i

4
�Ṽ�4321� − Ṽ0�4321�� , �66�

i
�Y

�G�12�
= G−1�21� − G0

−1�21� − �̃C�21;V� + ��21;V0�

+ �̃C�21;V0� , �67�

where we used that

−
i

4

�

�G�56� � d�1234�V0�1234�G2�G,���4321�

= ��65;V0� + �̃C�65;V0� . �68�

The variational equations that are obtained by putting the
derivatives �66� and �67� equal to zero are obviously solved
for the G and � that self-consistently solve the equations

G−1 = G0
−1 − ��G,�� , �69�

Ṽ0 = Ṽ�G,�� , �70�

where � is calculated from Eqs. �52� and �53�. Therefore the
functional Y�G ,�� is stationary whenever the Dyson equa-
tion is obeyed and whenever the electron-electron interaction
expanded in G and � is equal to the specified interaction V0.
Equation �65� for the variational functional Y�G ,�� is the
first basic result of this work. However, before it can be used
in actual calculations we have, among others, to specify the
specific structure of the functional ��G ,��. We will show
that for several infinite series of diagrammatic terms contrib-
uting to this functional we can find explicit expressions in
terms of G and �. To do this we first have to study the

functional Ṽ�G ,�� of Eq. �70�. This is the topic of the next
section.

V. STRUCTURE OF THE � FUNCTIONAL

In this section we analyze in more detail the diagrammatic
structure of the four-point vertex � and the functional

Ṽ�G ,�� of Eq. �70� which will allow us to obtain more ex-
plicit expressions for the functional �. These quantities can
be directly obtained from a diagrammatic expansion of the
two-particle Green function. If we express the diagrams in
terms of the fully dressed Green function G we only need to
consider diagrams that do not contain any self-energy inser-
tions. Since different authors use different definitions and
drawing conventions for the two-particle Green function, it is
important to be clear about them. We strictly follow the sign,
loop rule, and drawing conventions of Ref. 41 with the small
difference that we use Hugenholtz diagrams.25–28 For clarity
our Feynman rules are given in Appendix C. In Fig. 6 we
show the first and second order Hugenholtz diagrams in
terms of the fully dressed Green function G that contribute to
the two-particle Green function G2. We see that we can write
� as a sum of four classes of diagrams. There are three
classes of the form �ab ,cd� which denote diagrams which by
removal of two internal Green function lines can separate the
diagram into two parts, one part being connected to the ex-
ternal points ab and one part being connected to points cd.
The class �12, 34� contains diagrams of the particle-particle
type, such as the diagram in Fig. 6�d�, and will be denoted by
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�pp. There are two classes of particle-hole type, namely �14,
32� and �13, 24� which will be denoted by �ph

A and �ph
B .

Examples of diagrams of these types are Figs. 6�e� and 6�f�.
The remaining diagrams which do not fall into one of these
classes are denoted by �0 �such as Fig. 6�c��. We can there-
fore write

��1234� = �pp�1234� + �ph
A �1234� + �ph

B �1234� + �0�1234� .

�71�

The simplest diagram in class �0 is simply the bare vertex
iV�1234� �i.e., Fig. 6�c� the factor i follows from the Feyn-
man rules in Appendix C�. Since this diagram is special we
separate it off from �0 and define the remaining diagrams �0�
by the equation

�0�1234� = �0��1234� + iV�1234� . �72�

Using Eq. �72� we can then write

− iV�1234� = �pp�1234� + �ph
A �1234� + �ph

B �1234�

+ �0��1234� − ��1234� . �73�

We will now first show how all the terms on the right-hand
side of this equation can be constructed as a functional of �.
When we have done this we can insert this functional into
Eq. �63� and perform the integration with respect to � and
thereby construct our desired functional ��G ,��.

Let us start with the particle-particle diagrams �pp. The
contribution of all diagrams for �pp can be written as sums of
blocks of diagrams J connected with two parallel Green
function lines �see Fig. 7�. Each of these blocks J contains
diagrams which cannot disconnect points �12� and �34� by
cutting two Green function lines �such blocks are called

simple with respect to Eqs. �12� and �34� in the terminology
of De Dominicis� and therefore each J block does not con-
tain diagrams of the type �pp. We thus have

J�1234� = ��1234� − �pp�1234� . �74�

We introduce a convenient matrix notation

�12�J�34� = J�1234� , �75�

�12�GG�34� = G�13�G�24� . �76�

Within this notation we can, for instance, conveniently write
C=AB instead of

C�1234� = �12�AB�34� =� d�56��12�A�56��56�B�34�

=� d�56�A�1256�B�5634� . �77�

If we use this notation, then from the Feynman rules in Ap-
pendix C one can readily convince oneself that in matrix
notation we simply have

� = J + �pp = J +
1

2
JGGJ + �1

2

2

JGGJGGJ + . . .

= J +
1

2
JGG� , �78�

where for every pair of Green function lines we have to add
a factor of 1

2 �see Refs. 26–28 and 47�. This follows because
for any diagram contributing to J, the diagram with outgoing
lines interchanged leads to the same diagram for � �for the
simple diagram iV in J it follows from Feynman rule 5 in
Appendix C�. Relation �78� allows us to express �pp in terms
of �. We have

J = ��1 +
1

2
GG�
−1

. �79�

In combination with Eq. �74� this then gives

�pp = � − ��1 +
1

2
GG�
−1

, �80�

which expresses �pp in terms of �. Let us now do the same
for the particle-hole diagrams. Since

�ph
B �1234� = − �ph

A �2134� , �81�

we only need to construct �ph
A as a functional of �. For the

particle-hole diagrams �ph
A we can follow a similar reasoning

as for �pp and we first write � in terms of repeated blocks I
given by

I�1234� = ��1234� − �ph
A �1234� . �82�

The expression for � in terms of I is displayed in Fig. 8. If
we use the notation

�41�Ī�23� = I�1234� , �83�

FIG. 6. Expansion of the two-particle Green function G2 in
terms of the full G. The dot denotes the bare vertex V.

FIG. 7. Expression of � in terms of J blocks.
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�12�GĜ�34� = G�31�G�24� , �84�

where in the first term we defined a new matrix Ī by a cyclic
permutation of the indices, then �again using the Feynman
rules of Appendix C� we have in matrix notation

�̄ = Ī + �̄ph
A = Ī − IGĜĪ + IGĜIGĜĪ − . . . = Ī − IGĜ�̄ ,

�85�

where the alternating signs in Eq. �85� are related to Feyn-
man rule 4 in Appendix C. As a remark we note that from
Eqs. �85� and �37� we see that there is a simple relation
between I and the self-energy:

I�1234� = −
� ��14�
�G�32�

. �86�

One can indeed check, by iterating Eqs. �36� and �37�, that
the term � � /�G only yields diagrams that contribute to I.

We can now express �̄ph
A in terms of �̄. We have

Ī = �̄�1 − GĜ�̄�−1, �87�

which gives

�̄ph
A = �̄ − �̄�1 − GĜ�̄�−1. �88�

Before discussing the last set of diagrams �0� let us see if we
can integrate the functionals �pp and �ph

A that we obtained so
far. To do this we first make a general remark about func-
tional derivatives. We consider a given four-point function
a����1234� that we want to integrate with respect to � to
obtain a functional A, i.e.,

�A =� d�1234�a����1234����1234� . �89�

In our case we want to do this for a��� being �pp, �ph
A , �ph

B ,
and �0�. Because � � has the symmetry property of Eq. �40�
this can also be written as

�A =
1

4
� d�1234��a�1234� − a�2134� + a�3412�

− a�1243��� ��1234� . �90�

Therefore any part of a which is symmetric in the indices
�12� and �34� �or antisymmetric with respect to the inter-
change of pair �12� and pair �34�� will not contribute to this
variation. Therefore only certain �anti�symmetric parts of a
are uniquely determined as functional derivatives. This does
not pose a problem if the functional a we want to integrate
already has the same symmetry as �. This applies for in-

stance to �pp and �0�. However, the function �ph
A �1234� is not

antisymmetric in the indices �12� and �34�. However, the
combination

�ph
A �1234� − �ph

A �2134� = �ph
A �1234� + �ph

B �1234� �91�

has this property and therefore

2� d�1234��ph
A �1234�� ��1234�

=� d�1234���ph
A �1234� + �ph

B �1234�����1234� .

�92�

We can therefore obtain �ph
A +�ph

B as a functional derivative

by formally integrating �ph
A and multiplying the resulting

functional by 2. With this in mind we can now address the

integration of Ṽ in the right-hand side of Eq. �63� with re-
spect to �. Using Eq. �73� we can write

− iṼ�1234� = �̃pp�1234� + �̃ph
A �1234� + �̃ph

B �1234�

+ �̃0��1234� − �̃�1234� , �93�

where the expressions with the tilde are defined as in Eq.

�56�. Let us start by integrating �̃pp with respect to �. Using
Eq. �80� and taking into account the factor 1 /4 in Eq. �63�,
we have

1

4
�̃pp =

1

4
GG�ppGG =

1

4
GG��1 − �1 +

1

2
GG�
−1�GG

=
1

4
GG�GG −

1

2
�1 − �1 +

1

2
GG�
−1�GG

=
�Lpp�G,��

��
, �94�

where we defined

Lpp�G,�� =
1

8
tr	GG�GG�
 −

1

2
tr	GG�


+ tr�ln�1 +
1

2
GG�
� . �95�

In this expression the trace tr �not to be confused with the
thermodynamic trace Tr� for two-particle functions is defined
as

tr	A
 =� d�12��12�A�12� . �96�

The diagrammatic expansion of the functional Lpp is dis-
played in the upper part of Fig. 9. Let us now consider the
particle-hole diagrams. Since

tr	GĜ�̄ph
A GĜ��̄
 = tr	�̃ph

A � �
 , �97�

it is sufficient to integrate GĜ�̄ph
A GĜ with respect to �̄. We

have, using Eq. �88�,

FIG. 8. Expression of � in terms of I blocks.
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1

4
�̄
˜

ph
A =

1

4
GĜ�̄ph

A GĜ =
1

4
GĜ�̄�1 − �1 − GĜ�̄�−1�GĜ

=
1

4
GĜ�̄ph

A GĜ +
1

4
�1 − �1 − GĜ�̄�−1�GĜ

=
1

2

�Lph�G,��

� �̄
, �98�

where we defined the functional

Lph�G,�� =
1

4
tr	GĜ�̄GĜ�̄
 +

1

2
tr	GĜ�̄


+
1

2
tr	ln�1 − GĜ�̄�
 . �99�

The diagrammatic expansion of the functional Lph is dis-
played in the lower part of Fig. 9. Now since

tr	��̃ph
A + �̃ph

B �� �
 = 2 tr	�̃ph
A � �
 = 2 tr	GĜ�̄ph

A GĜ� �̄
 ,

�100�

we obtain

1

4
��̃ph

A + �̃ph
B � =

�Lph�G,��
� �

. �101�

We now collect our results and define

L�G,�� = Lpp�G,�� + Lph�G,�� −
1

8
tr	GG�GG�
 .

�102�

This functional L has the property

�L

��
=

1

4
��̃pp + �̃ph

A + �̃ph
B − �̃� . �103�

Using this functional we can now split up the functional
� further as

��G,�� = L�G,�� + L��G,�� . �104�

This defines a new functional L��G ,��. Then from Eq. �63�
we see that if we differentiate both sides of Eq. �104� with
respect to � we obtain

��

��
= −

i

4
Ṽ =

1

4
��̃pp + �̃ph

A + �̃ph
B − �̃� +

�L�

��
. �105�

We therefore see by comparing to Eq. �73� that the functional
L� must satisfy

1

4
�̃0� =

�L��G,��
��

. �106�

This functional cannot be written out explicitly, but since �0�
is well-defined diagrammatically the functional L� does have
a diagrammatic expansion. The first term in this expansion is
displayed in Fig. 10 together with its functional derivative.
Note that the derivative yields four diagrams in accordance
with Eq. �90�. We can further consider the functional deriva-
tive of the functional ��G ,�� with respect to G. According
to Eq. �64� this yields self-energy diagrams, as is also seen
from the diagrammatic expansion of �. The G derivatives of
Lpp, Lph, and L� lead to correlation self-energy diagrams
�C,pp�G ,��, �C,ph�G ,��, and �C� �G ,�� in terms of G and �
that fall into different topological classes.

We now again collect our results and find from Eq. �65�
that the final De Dominicis functional �for u=0� is given by

iY�G,�� = − tr	ln�− G−1�
 − tr	G0
−1�G − G0�
 − L�G,��

− L��G,�� −
i

4
tr	V0G2�G,��
 . �107�

We finally write the functional in a different form using the
Dyson equation of Eq. �33�

iY�G,�� = − tr	ln�� − G0
−1�
 − tr	�G
 − L�G,�� − L��G,��

−
i

4
tr	V0G2�G,��
 . �108�

We can readily check the variationally property of this func-
tional. We then find that

i�Y = − tr	��� − G0
−1�−1 + G���
 − tr	���V� − ��V0� + �̃C�V�

− �̃C�V0���G
 +
i

4
tr	�Ṽ − Ṽ0�� �
 = 0, �109�

whenever V�G ,��=V0 for a self-consistent solution of the
Dyson equation. The variational functional �108� together

FIG. 9. Expansion of the functionals Lpp and Lph in diagrams.
The four-point vertex � is denoted with a big black dot.

FIG. 10. The first term in the expansion of the L� functional and
its functional derivative with respect to �. For clarity in drawing the
diagrams for �L� /�� we interchanged the end-point labels rather
than making the outgoing lines cross.
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with the variational property �109� is the central result of this
work. In the next sections we will investigate the practical
evaluation of this functional. It is important to note that al-
though the functionals in Eqs. �107� and �108� are equivalent
when evaluated on the fully self-consistent G and � obtained
from the Dyson equation and V�G ,��=V0, this is not true
anymore when evaluated at approximate G and �. In accor-
dance with Ref. 5 the functional forms in Eqs. �107� and
�108� will be denoted as the Klein-form and Luttinger-Ward-
form of the functional Y. It was demonstrated in the � for-
malism that the Luttinger-Ward form of the functional is
more stable �has a smaller second derivative� when used for
the calculation of total energies.8 We will therefore use in the
following the Luttinger-Ward form of the functional.

VI. � DERIVABLE THEORIES ARE CONSERVING

In this section we will show that any approximate
�-functional leads to a corresponding �-functional. Since
we know from the work of Baym37 that any �-derivable
theory is conserving it follows that also �-derivable theories
are conserving, i.e., they respect the macroscopic conserva-
tion laws, such a momentum, energy, and particle number
conservation and related constraints such as the virial
theorem.7 Consider any approximate �-functional. Then
from the variational equation

� ��G,��
��

= −
i

4
Ṽ0 �110�

we can construct ��G ,V0� as a functional of G and the bare
interaction V0 �some examples of this procedure are given in
the next section�. With the functional ��G ,V0� defined in this
way we define the following �-functional,

��G,V0� = − ��G,��G,V0�� −
i

4
tr	V0G2�G,��G,V0��


�111�

and the action functional

iY�G,V0� = − tr	ln�� − G0
−1�
 − tr	�G
 + ��G,V0� ,

�112�

where in this expression self-energy ��G ,��G ,V0�� must
also be regarded as a functional of G and V0. From the defi-
nition of � it then follows directly that

�� = − tr	�̃C�G
 +
i

4
tr	Ṽ0� �
 + tr	�� + �̃C��G


−
i

4
tr	Ṽ0��
 = tr	��G
 . �113�

We therefore obtain the result

��

�G�12�
= ��21� . �114�

We further have that the functional Y�G ,V0� of Eq. �112� is
stationary when

0 = − tr	��� − G0
−1�−1 + G���
 − tr��� −

��

�G

�G� ,

�115�

i.e., whenever the Dyson equation is obeyed for a
�-derivable self-energy. On the basis of the work of Baym37

we can therefore conclude that �-derivable theories are con-
serving.

VII. APPROXIMATIONS USING THE � FUNCTIONAL

A. Practical use of the variational property

After having discussed the general properties of the func-
tional Y�G ,�� we will discuss its use in the calculation of
total energies. For a given approximation to ��G ,�� the sta-
tionary point of the functional Y corresponds to an approxi-
mation for the self-energy and the four-point vertex obtained
from a solution of the Dyson equation and of an equation of
Bethe-Salpeter type, both of which need to be solved to self-
consistency. The solution of these equations for general elec-
tronic systems is computationally very expensive or impos-
sible. However, if we are only interested in total energies,
then we can use the variational property of Y and save
greatly in computational cost as the full self-consistency step
can then be skipped. To illustrate this we let G and � be
self-consistent solutions to the variational equations and we

let G̃ and �̃ be approximations to G and �. Then we have
that

Y�G̃,�̃� = Y�G,�� +
1

2
tr� � 2Y

�G�G
�G�G�

+ tr� � 2Y

�G��
�G��� +

1

2
tr� � 2Y

����
����� + ¯ ,

�116�

where �G= G̃−G and ��= �̃−� are the deviations from the
Green function and four-point vertex to the self-consistent
ones. We see that the error we make in Y is only of second
order in �G and ��. We may therefore obtain rather accu-
rate energies from rather crude inputs. These expectations
were indeed borne out by our earlier calculations within the
� formalism on atoms and molecules.8 Obviously the actual
error we make also depends on how large the second deriva-
tives of functional Y are. For this reason the Klein and
Luttinger-Ward forms of the functional perform differently.
In fact, experience within the �-functional formalism has
shown that the Luttinger-Ward is more stable than the Klein
functional with respect to changes of the input Green
function.8

B. Approximate �-functionals

In the following we study some approximate schemes us-
ing the � functional in order to illustrate the formalism dis-
cussed in the preceding sections. We restrict ourselves here
to the two most simplest examples, the self-consistent second
order approximation and the self-consistent T-matrix ap-
proximation. A more advanced approximation, also involv-
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ing the particle-hole diagrams, is discussed in the section on
the practical evaluation of the �-functional.

The very simplest nontrivial approximation to the we can
make to the �-functional is to take Lpp=Lph=L�=0. This
yields the functional

iY2�G,�� = − tr	ln�� − G0
−1�
 − tr	�G
 +

1

8
tr	GG�GG�


−
i

4
tr	V0G2�G,��
 �117�

which we will denote by Y2 since it only involves second
order diagrams. The variational equations yield

G−1 = G0
−1 − ��G,�� , �118�

0 =
1

4
�̃ −

i

4
Ṽ0, �119�

which simply implies that �= iV0 and that

��G,V0��11�� = − i� d�23�V0�1231��G�32�

+
1

2
� d�234567�V0�1234�G�36�G�45�

� V0�5671��G�72� . �120�

This amounts to a self-consistent solution of the Dyson equa-
tion with only second order diagrams. A fully self-consistent
solution of these equations for molecules was recently car-
ried out by us.7 One of the next simplest approximations is
obtained by taking L�=Lph=0 which yields the functional

iYpp�G,�� = − tr	ln�� − G0
−1�
 − tr	�G
 − Lpp�G,��

+
1

8
tr	GG�GG�
 −

i

4
tr	V0G2�G,��
 .

�121�

The variational equations correspond to

G−1 = G0
−1 − ��G,�� �122�

0 = −
�Lpp

��
+

1

4
�̃ −

i

4
Ṽ0, �123�

where � is calculated from Eqs. �52� and �53�. The second
variational, Eq. �124�, corresponds to

iV0 = ��1 +
1

2
GG�
−1

. �124�

This equation can be inverted to give

� = �iV0��1 −
1

2
GG�iV0�
−1

, �125�

and expresses the renormalized four-point vertex as a sum of
particle-particle �direct and exchange� ladder diagrams in
terms of the bare potential V0. The corresponding self-energy
is then readily obtained from Eqs. �52� and �53� by inserting

the � of Eq. �125� in Eq. �53�. This approximation is equiva-
lent to the self-consistent T-matrix approximation. It is clear
that the set of approximations can be made more and more
advanced by using more sophisticated approximations for the
�-functional. In the following sections we will discuss the
numerical evaluation of iY. We will then, among other
things, consider an approximate four-point vertex obtained
from the T-matrix approximation as an approximate input for
the evaluation of the energy functional iY at a more sophis-
ticated level of perturbation theory.

VIII. PRACTICAL EVALUATION OF THE FUNCTIONAL

A. Evaluation of the traces

In this section we discuss how to evaluate the functional
Y�G ,�� in actual applications. Our goal is to evaluate Y for
an equilibrium system in which case all two-time quantities
depend on relative time variables on the vertical stretch of
the Keldysh contour. In that case it is convenient to go over
to a Matsubara representation �we use the notation of
Kadanoff and Baym48�

A�t − t�� =
i

�
�

z

e−iz�t−t��A�z� , �126�

A�z� = �
0

−i�

dtA�t − t��eiz�t−t��, �127�

where the times are imaginary �t=−i� for 0����� and
where z= in� /� are the Matsubara frequencies which run
over even or odd integers n depending on whether A is a
bosonic or fermionic function. In this way the equation of
motion for the Green function simply attains the form

�z − h�x1��G�x1x2,z� = ��x1,x2� +� dx3��x1x3,z�G�x3x2,z� .

�128�

For the traces of two-point functions we have the expression

tr A = �
0

−i�

dtdxA�1,1+� = lim
�→0+

�
z
� dxe�zA�x,x,z� .

�129�

For the various traces in the functional Y it is further conve-
nient to introduce a one-particle basis, such that we can write

A�x1,x2,z� = �
ij

Aij�z��i�x1�� j
*�x2� . �130�

Then we have, for instance, that

tr AB = lim
�→0+

�
ij,z

e�zAij�z�Bji�z� . �131�

If we choose the orbitals to be eigenfunctions of the one-
particle Hamiltonian h,

h�x��i�x� = ei�i�x� , �132�

then the equation of motion of the Green function attains the
form

TOTAL ENERGIES FROM VARIATIONAL FUNCTIONALS… PHYSICAL REVIEW B 74, 195105 �2006�

195105-13



�z − ei�Gij�z� = �ij + �
k

�ik�z�Gkj�z� �133�

and we see immediately that the noninteracting Green func-
tion G0 is given by

G0,ij�z� =
�ij

z − ei
. �134�

Consequently the grand potential for the noninteracting sys-
tem is given by �0= iY0 /� where10,28,49

�0 = −
1

�
tr ln	− G0

−1
 = −
1

�
lim

�→0+
�

i
�

z

e�z ln�ei − z�

= −
1

�
�

i

ln�1 + e−�ei� . �135�

In the zero-temperature limit �→� this simply gives

lim
�→�

�0 = �
i=1

N

ei, �136�

where the sum runs over the N occupied electron orbitals.
Note that the chemical potential � is included in h such that
ei=�i−� where �i are the eigenvalues of the one-body part of
the Hamiltonian.

As a next step we will discuss how to evaluate the func-

tional on an approximate Green function G̃ and an approxi-

mate vertex �̃. The input Green function will in practice not
be a fully interacting Green function but rather one obtained
from a local density approximation or from a Hartree-Fock

approximation. With approximate inputs G̃ and �̃ the first
term in Eq. �109� can be written in a computationally con-
venient form as5

− tr ln	��G̃,�̃� − G0
−1


= − tr	ln�− Ḡ−1�
 − tr	ln�1 − Ḡ�C�G̃,�̃��
 , �137�

where we defined

�C�G̃,�̃� = ��G̃,�̃� − �HF�G̃� �138�

and the Green function Ḡ from the Dyson equation

Ḡ = G0 + G0�HF�G̃�Ḡ . �139�

The Green function Ḡ therefore presents the first iteration

towards the Hartree-Fock Green function starting from G̃.

Therefore Ḡ=GHF when we take G̃=GHF as an input Green
function. The term �C represents the correlation part of the

self-energy evaluated at an approximate G̃ and �̃. The reason

for introducing Ḡ is that by doing this we have in the last
term of Eq. �137� eliminated a static part of the self-energy,
which makes this term well defined without a convergence
factor and also makes it decay much faster for large frequen-
cies, which is computationally advantageous as was shown
in Ref. 5. The first term in Eq. �137� can be evaluated ana-
lytically to give

iȲ0 = − tr	ln�− Ḡ−1�
 = − �
i

ln�1 + e−�ēi� , �140�

where ēi= �̄i−� and �̄i are the eigenvalues the Hartree-Fock

equations with a nonlocal self-energy �HF�G̃�. In practice
�for instance for LDA input Green functions� these eigenval-
ues are close to the true Hartree-Fock eigenvalues. Now the

functional Y�G̃ , �̃� can be written as

iY�G̃,�̃� = iȲ0 − tr	ln�1 − Ḡ�C�G̃,�̃��
 − tr	��G̃,�̃�G̃


− L�G̃,�̃� − L��G̃,�̃� −
i

4
tr	V0G2�G̃,�̃�
 . �141�

The second term can be evaluated by diagonalization of Ḡ�C
since for a matrix A�z� we have

tr	ln�1 − A�
 = lim
�→0+

�
z,i

e�z ln�1 − �i�z�� , �142�

where �i�z� are the eigenvalues of A�z�. This completes one
part of the evaluation of the functional Y.

B. Evaluation of the L�=0 functional

Let us now discuss the evaluation of the L�G ,�� and
L��G ,�� functionals. The evaluation of even the lowest order
term of the L� functional will be computationally very diffi-
cult in practice. The first term in the expansion of L� is the
pentagon of Fig. 10 containing five four-point vertices �.
Since every four-point vertex depends on four space-time
coordinates the pentagon is �apart from the spin summations�
formally an 80-dimensional integral. Fortunately, even the
approximation L�=0 represents a very sophisticated many-
body approximation. We will therefore in the following con-
centrate on this case and consider the evaluation of the func-
tional

iY�G,�� = iȲ0 − tr	ln�1 − Ḡ�C�G,���
 − tr	�G
 − L�G,��

−
i

4
tr	V0G2�G,��
 . �143�

The evaluation of the first terms in this expression has been
discussed in the preceding subsection and we will therefore
concentrate on evaluation of L�G ,��. In this term the trace is
taken over two-particle functions and its evaluation will
therefore be slightly different from the case discussed above.

As our approximate � we will take the sum of all particle-
particle and exchange ladders in terms of V0 for which we
will eventually take the zero-frequency limit. This is the ap-
proximate T matrix used in Ref. 23. This approximate � we

will denote as �̃. This approximate � will be expressed in
terms of our approximate Green function which we will de-

note with G̃. Then from Eq. �78� we have

�̃ = iV0 +
i

2
V0G̃G̃�̃ . �144�

If we write
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V0�1234� = ��t1,t2���t1,t4���t2,t3�V0�x1x2x3x4� �145�

with V0�x1x2x3x4� explicitly given in Eq. �23�, we see that
we can write

�̃�1234� = ��t1,t2���t3,t4���x1x2x3x4;t1t3� . �146�

If we further expand � in a basis as

��x1x2x3x4;t1t3� = �
ijkl

�ijkl�t1t3��i
*�x1�� j

*�x2��k�x3��l�x4�

�147�

then from Eq. �144� we see that � satisfies

�ijkl�t1t3� = i��t1,t3�V0,ijkl +
i

2 �
pqrs

�
0

−i�

dt2V0,ijpq

� G̃qr�t1,t2�G̃ps�t1,t2��rskl�t2t3� , �148�

which in frequency space attains the form

�ijkl�z� = iV0,ijkl −
1

2�
�
z1

�
pqrs

V0,ijpq

� G̃qr�z1�G̃ps�z − z1��rskl�z� �149�

�note that for � we have to sum over the even Matsubara

frequencies�. For simple approximate Green functions G̃ of
Hartree-Fock or local density type the frequency sum over z1
is readily evaluated. We are now ready to evaluate the func-

tionals Lpp�G̃ , �̃� and Lph�G̃ , �̃�. They are given by the ex-
pressions

Lpp = tr	ln�1 + A�
 − tr	A
 + 1
2 tr	A2
 , �150�

Lph = 1
2 tr	ln�1 − B�
 + 1

2 tr	B
 + 1
4 tr	B2
 , �151�

where A=GG� and B=GĜ�̄. Therefore in order to calculate
Lpp and Lph we have to diagonalize A and B in a two-particle
basis. Let us start by the calculation of A. We have for our

approximate �̃ and G̃,

Aijkl�t1t2t3t4� = ��t3,t4��
pq
�

0

−i�

dt5G̃ip�t1,t5�

� G̃jq�t2,t5��pqkl�t5t3� . �152�

Because of the equal-time � function in Eq. �152� we find
that

tr	An
 =� d�11� . . . nn���11��A�22�� ¯ �nn��A�11��

= �
p1. . .pn

�
0

−i�

d�t1 . . . tn�Āp1p2
�t1,t2� . . . Āpnp1

�tn,t1�

= lim
�→0+

�
z

e�zĀp1p2
�z� . . . Āpnp1

�z� , �153�

where pk= �ikjk� are multi-indices and where we defined

Āijkl�t1t3� = �
pq
�

0

−i�

dt5G̃ip�t1,t5�G̃jq�t1,t5��pqkl�t5t3� ,

�154�

which in frequency space attains the form

Āijkl�z� =
i

�
�

z1,pq

G̃ip�z1�G̃jq�z − z1��pqkl�z� . �155�

From diagonalization of Āpq�z� where p= �ij� and q= �kl� we
then immediately obtain

Lpp�G̃,�̃� = �
z,p

�ln�1 + �p�z�� − �p�z� +
1

2
�p

2�z�
 , �156�

where �p�z� are the eigenvalues of Ā�z�. Let us finally con-
centrate on the evaluation of B. This expression is given by

Bijkl�t1t2t3t4� = �
pq

G̃qi�t4,t1�G̃jp�t2,t3��pklq�t3t4� . �157�

This expression depends on three relative times which makes
it awkward to evaluate the logarithm. We therefore follow
Ref. 23 and replace in frequency space �ijkl�z� by its zero-
frequency limit �ijkl�0�,

�ijkl�t3t4� = �ijkl�0�� �t3,t4� �158�

such that

Bijkl�t1t2t3t4� = ��t3t4��
pq

G̃qi�t4,t1�G̃jp�t2,t3��pklq�0� .

�159�

Then, similarly as for the quantity A we have

tr	Bn
 = lim
�→0+

�
z

e�zB̄p1p2
�z� . . . B̄pnp1

�z� , �160�

where

B̄ijkl�z� =
i

�
�

z1,pq

G̃qi�z1�G̃jp�z1 + z��pklq�0� . �161�

Now B̄�z� is readily diagonalized with respect to its two-
particle indices to give

Lph�G̃,�̃� = �
z,p

�1

2
ln�1 − �̂p�z�� +

1

2
�̂p�z� +

1

4
�̂p

2�z�
 ,

�162�

where �̂p�z� are the eigenvalues of B̄�z�. The full functional

L�G̃ , �̃� is then constructed as

L�G̃,�̃� = Lpp�G̃,�̃� + Lph�G̃,�̃� −
1

8
tr	A2
 , �163�

where the last term is easily found by summing the squares
of the eigenvalues of A and performing a frequency sum. It
finally remains to calculate an explicit expression for

��G̃ , �̃� and to evaluate the last term in Eq. �143�. The self-
energy is readily calculated from Eqs. �52� and �53� to be
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�ij�z� = �ij
HF + �ij,C�z� , �164�

where

�ij
HF =

1

�
lim

�→0+
�

z

V0,ipqjG̃qp�z� �165�

and

�ij,C�z� =
i

2�
�
z1,z2

�
pqrstu

V0,ipqrG̃rs�z1�G̃qt�z2�

� G̃up�z1 + z2 − z��stuj�0� . �166�

This expression is, of course, considerably simplified when
we use a diagonal input Green function. This finally con-
cludes the discussion on the practical evaluation of the func-
tional.

In summary: evaluation of the functional Y in practice
therefore essentially involves the diagonalization of the one-
particle matrix A�z� of Eq. �142� and the diagonalization of

the matrices Ā�z� and B̄�z� of Eqs. �154� and �161� in a
two-particle basis followed by a frequency summation. This
is, for instance within the DMFT approach used by Katsnel-
son and Lichtenstein,23 a numerically quite feasible proce-
dure.

IX. CONCLUSIONS

In this work we studied variational functionals of the
Green function and the renormalized four-point vertex in or-
der to calculate total energies for strongly correlated systems.
The variational functionals were derived by Legendre trans-
form techniques starting from an expression of the action �or
grand potential� defined on the Keldysh contour. The struc-
ture of the functionals was further analyzed by means of
diagrammatic techniques. We finally gave a detailed discus-
sion of the practical use and evaluation of these for different
approximate functionals. Future applications along the lines
described are intended.

Finally we comment on further applications of the varia-
tional functionals. It was found that within the � and the �
formalism could be successfully used to derive expressions
for response functions within time-dependent density-
functional theory �TDDFT�.38 This was done by inserting
approximate Green functions G�v�, coming from a noninter-
acting system with a local potential v, into the variational
functionals. Then the potentials were optimized by requiring
that �Y /�v=0. Due to the one-to-one correspondence be-
tween the density and the potential �as follows from the
time-dependent generalization of the Hohenberg-Kohn
theorem2� this then implies that we are optimizing a time-
dependent density functional. The optimized potentials are
then to be interpreted as Kohn-Sham potentials. In this way
one obtains a density functional for every diagrammatic ex-
pression from the � or �-functional. A similar procedure
can now be carried out for the �-functional.

A further point of future investigation is concerned with
finding the variationally most stable functional. It was al-
ready mentioned that the Klein and Luttinger-Ward �LW�

forms of the functional lead to different results. The
Luttinger-Ward form was found to be more stable. This is
probably due to the fact that the second derivatives of the
LW functional are smaller than those of the Klein functional.
However, it is very well possible that one could derive a
better functional that would make the second derivatives
even smaller or make them vanish. In that case the errors we
make would be only to third order in the deviation �G of the
input Green to the true self-consistent one. This still remains
an issue for future investigations. Finally we mention that
work on implementation of the formalism discussed here is
in progress.
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APPENDIX A: A GENERATING FUNCTIONAL FOR
THE GREEN FUNCTION

In order to obtain the Green functions as variational de-
rivatives we define37 an evolution operator in terms of a time
and space nonlocal potential u�12�,

Û�u��t0 − i�,t0� = TC exp�− i� dtĤ�t�

− i� d1� d2�̂†�x1�u�12��̂�x2�
 ,

�A1�

where we used the compact notation 1= �x1 , t1�. Since we
now have two times in the exponent this expression only has
meaning if we define how the time ordering is specified if we
expand this expression. It is defined as follows:

Û�u��t0 − i�,t0� � Û�u = 0��t0 − i�,t0� + �
n=1

�
�− i�n

n!

�� d�11� . . . nn��u�1�1� . . . u�n�n�

� �TC��̂H
† �1���̂H�1� . . . �̂H

† �n���̂H�n��� ,

�A2�

where the expectation values under the integral sign are av-
erages �as in Eq. �8�� in the absence of the nonlocal field u.
This definition agrees in the limit of a time-local potential,
i.e., u�12�=u�x1t1 ,x2t1���t1

+ , t2�, with an expression that can
be derived directly from the time-dependent Schrödinger
equation. We now define the functionals

Z�u� = Tr	U�u��t0 − i�,t0�
 , �A3�

iY�u� = − ln Z�u� . �A4�

Then the one-particle Green function in the presence of the
nonlocal field u is defined as
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Gu�11�� � i
�Y

�u�1�1�
= −

1

Z�u�
�Z

�u�1�1�
. �A5�

When evaluated at u=0 the Green function reduces to the
familiar one

Gu=0�11�� = − i�TC��̂H
† �1��̂�1���� . �A6�

Let us note that one should be careful with dealing with
time-nonlocal potentials. It would, for instance, be tempting
to think that Gu would be given by the expression

Gu�11�� = − i
Tr	U�u��t0 − i�,t0�TC��̂H

† �1���̂H�1��

Tr	U�u��t0 − i�,t0�


,

�A7�

where the Heisenberg operators in the presence of u would

be given by ÔH=U�u��t0 , t�ÔÛ�u��t , t0�. However, this ex-
pression is not valid if u is nonlocal in time. For instance,
when expanding Eqs. �A5� and �A7� in powers of u using Eq.
�A2�, one immediately sees that certain time orderings of the
field operators in Eq. �A5� are absent in Eq. �A7�. Similarly

the evolution operator Û�u��t , t�� does not satisfy a simple
equation of motion. However, we can still derive the equa-
tions of motion for Gu on the basis of the hierarchy equations
of the n-body Green functions in the absence of the nonlocal
field u, as we will show below.

More generally we can now define n-body Green func-
tions Gn,u from a repeated differentiation of Z�u�, i.e.,

1

Z�u�
� nZ

�u�1�1� . . . �u�n�n�
= �nGn,u�1 . . . n,1� . . . n�� ,

�A8�

where �n= �−1�n�n+1�/2. The prefactor �n results from reorder-

ing the operator product �TC��̂†�1���̂�1� . . . �̂†�n���̂�n��� to

�TC��̂�1� . . . �̂�n��̂†�1�� . . . �̂†�n���� as is easily verified by in-
duction. One can readily check that for u=0, Eq. �A8� agrees
with our previous definition of the n-body Green function of
Eq. �19�. From Eq. �A8� we further immediately obtain that

�Gu�14�
�u�32�

=
�

�u�32��−
1

Z�u�
�Z

�u�41�

=

1

Z2

�Z

�u�14�
�Z

�u�32�
−

1

Z

�2Z

�u�41��u�32�

= Gu�14�Gu�23� − G2,u�1234� . �A9�

This is Eq. �27� used in Sec. III. As a next step we derive the
hierarchy equations for the Green functions Gn,u. From Eq.
�A8� we see that we can expand the functional Z�u� as a
Taylor series expansion in u as

Z�u� = Z�0��
n=0

�
�n

n!
� d�11� . . . nn��

� Gn�1 . . . n,1� . . . n��u�1�1� . . . u�n�n� , �A10�

where the term with n=0 is just defined to be one. The Green
functions Gn are the Green functions in the absence of the

field u. The one-body and n-body Green functions can there-
fore be expressed in terms of the field-free Green functions
using Eqs. �A5�, �A8�, and �A10�. One obtains for Gu and
G2,u the equations

Z�u�
Z�0�

Gu�11�� = G�11�� − �
n=2

�
�n

�n − 1�! � d�22� . . . nn��

� Gn�1 . . . n,1� . . . n��u�2�2� . . . u�n�n� ,

�A11�

Z�u�
Z�0�

G2,u�12;1�2��

= G�12;1�2�� − �
n=3

�
�n

�n − 2�! � d�33� . . . nn��

� Gn�1 . . . n,1� . . . n��u�3�3� . . . u�n�n� . �A12�

From these expressions we see that Gu and G2,u inherit the
Kubo-Martin-Schwinger boundary conditions from the Gn. If
we act with the operator i�t1

−h�1� on both sides of Eq. �A11�
and use the Martin-Schwinger hierarchy equations �21� for
the Green functions Gn in the absence of the u field together
with Eq. �A12�, we obtain, after slightly tedious but straight-
forward manipulations, the equation of motion for Gu,

�i�t1
− h�1��Gu�11�� = � �11�� +� d2u�12�Gu�21��

− i� dxv�x1,x�G2,u�1,xt1,xt1
+,1�� .

�A13�

By functional differentiation with respect to u we can gener-
ate equations of motion for the higher-order Green functions.
To see this we first multiply Eq. �A13� by Z�u� to obtain

�i�t1
− h�1���− i��11�� = � �11��Z�u� +� d1̄u�11̄��− i��1̄1��

− i� dxv�x1,x��− i�2�1,xt1,xt1
+,1�� ,

�A14�

where we introduced the simplified notation

�1 . . . n;1� . . . n�� = Z�u�Gn,u�1 . . . n,1� . . . n�� . �A15�

We use the convention that the primed variables are always
associated with creation operators and that the unprimed
variables are always associated with the annihilation opera-
tors. Taking the functional derivative of Eq. �A14� with re-
spect to u�2�2� then gives
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�i�t1
− h�1���− i�2�11�2�2�

= � �11���− i��2�2� + � �12���− i��21��

+� d1̄u�11̄��− i�2�1̄1�2�2�

− i�dxv�x1,x��− i�3�1,xt1,xt1
+,1�2�2� . �A16�

Reordering the indices and dividing by Z�u� then gives

�i�t1
− h�1��G2,u�121�2��

= − � �11��Gu�22�� + � �12��Gu�21��

+� d1̄u�11̄�G2,u�1̄21�2��

− i� dxv�x1,x�G3,u�12,xt1,xt1
+,1�2�� . �A17�

By continued differentiation we obtain the general hierarchy
equations for Gn,u

�i�t1
− h�1��Gn,u�1 . . . n,1� . . . n��

= �
j=1

n

� �1j���− 1�n−j

�Gn−1,u�2 . . . n,1� . . . j� − 1, j� + 1 . . . n��

+� d1̄u�11̄�Gn,u�1̄2 . . . n,1� . . . n��

− i� dxv�x1,x�Gn+1,u�1 . . . n,xt1,xt1
+,1� . . . n�� .

�A18�

These equations are readily checked by induction if we mul-
tiply them by Z�u� and take the functional derivative with
respect to u�n�+1,n+1�. We have therefore established that
Green functions Gn,u satisfy an obvious generalization of the
hierarchy equations. The relation �A18� is the main result of
this Appendix and will be essential to the derivation in the
next section. Note further that Eq. �A18� can be used to
derive a Wick’s theorem in the presence of the nonlocal field
u. If we put w=0 we find that the noninteracting n-body
Green functions Gn,u satisfy Eq. �A18� if they are written as
determinants in terms of Gu.

APPENDIX B: THE EQUATION OF MOTION OF Gu,V

The main goal in this Appendix is to derive the equations
of motion for the Green function in the presence of the a
nonlocal one-body potential u�12� and a nonlocal two-body
potential V�1234�. As in Appendix A the main difficulty is
caused by the fact that u and V are nonlocal in time. Our final
result can be obtained with the help of Eq. �A18�. Let Z�u ,V�
be given by

Z�u,V� = Tr	Û�u,V��t0 − i�,t0�
 �B1�

where

Û�u,V��t0 − i�,t0� = TC exp�− i� dtĤ0�t�

− i� d1� d2�̂†�x1�u�12��̂�x2�

−
i

4
� d�1234�V�1234�

� �̂†�x1��̂†�x2��̂�x3��̂�x4�
 . �B2�

Due to the multiple time integrals this expression has only
meaning when we define how the time ordering is specified
when we expand this expression. We define

Û�u,V��t0 − i�,t0� � Û�0,0��t0 − i�,t0� + �
n,m=1

�
�− i�n+m

n!m!4m

�� d�y1̄ . . . yn̄�d�X1 . . . Xm�

� u1̄ . . . un̄V1 . . . Vm

�TC�ŷ1̄ . . . ŷn̄X̂1 . . . X̂m� , �B3�

where for the coordinates we introduced the short notation

yī = �ī�, ī� , �B4�

Xi = „�2i − 1��,�2i��,2i − 1,2i… �B5�

and we further defined

uī = u�yi� , �B6�

ŷī = �̂H
† �ī���̂H�ī� , �B7�

Vi = V�Xi� , �B8�

X̂i = �̂H
†
„�2i − 1��…�̂H

†
„�2i��…�̂H�2i − 1��̂H�2i� , �B9�

where the Heisenberg representation of the operators is de-

fined with respect to Ĥ0. We then define the n-particle Green
function Gn,u,V in the presence of the time-nonlocal fields u
and V as

�nGn,u,V�1 . . . n;1� . . . n�� �
1

Z�u,V�
� nZ�u,V�

�u�1�1� . . . u�n�n�
,

�B10�

where �n= �−1�n�n+1�/2. For V=0 this definition agrees with
the definition �A8� in Appendix A in the absence of two-
particle interactions. Now from Eq. �B3� one can readily de-
rive that

� kZ�u,V�
�V1 . . . �Vk

=
�− i�k

4k

� 2kZ�u,V�
�u�1�1� . . . u��2k��,2k�

. �B11�

With this equation we find that we can express the Green
functions equivalently as
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G2n,u,V„1 . . . 2n;1� . . . �2n��… =
4n�− i�n

Z�u,V�
� kZ�u,V�

�V1 . . . �Vn
,

�B12�

G2n+1,u,V„1̄,1, . . . 2n; 1̄�,1� . . . �2n��…

= −
4n�− i�n

Z�u,V�
� 2n+1Z�u,V�
�u1̄V1 . . . Vn

. �B13�

As a particular case we have

Gu,V�11�� = −
1

Z�u,V�
�Z�u,V�
�u�1�1�

, �B14�

G2,u,V�121�2�� = −
4i

Z�u,V�
�Z�u,V�

�V�1�2�12�
. �B15�

These equations are two basic starting equations, Eqs. �41�
and �42�, of Sec. IV. It remains to show that they are related
by an equation of motion. From Eqs. �B12� and �B13� we see
that Z�u ,V� has the following Taylor expansion around V
=0:

Z�u,V�
Z�u,0�

= �
n=0

�
in

n!4n � d�X1 . . . Xn�

� G2n,u�1 . . . 2n;1� . . . 2n��V1 . . . Vn, �B16�

where we denote Gn,u=Gn,u,V=0. Similarly for Gu,V we have
from Eq. �B13� the Taylor series expansion

Z�u,V�
Z�u,0�

Gu,V�1̄1̄�� = Gu�1̄, 1̄�� + �
n=1

�
in

n!4n � d�X1 . . . Xn�

� G2n+1,u�1̄1 . . . 2n; 1̄�1� . . . 2n��V1 . . . Vn

�B17�

and for the two-particle Green function from Eq. �B12�,

Z�u,V�
Z�u,0�

G2,u,V�1̄2̄, 1̄�2̄��

= G2,u�1̄2̄, 1̄�2̄�� − i�
n=2

�
in

4n−1�n − 1�! � d�X1 . . . Xn−1�

� G2n,u„1̄2̄12 . . . 2�n − 1�;

1̄�2̄�1�2� . . . 2�n − 1��…V1 . . . Vn−1. �B18�

To obtain an equation of motion of Gu,V we can use the
hierarchy equations for Gn,u of Eq. �A18� for w=0,

�i�t1
− h�1��Gn,u�1 . . . n,1� . . . n��

= �
j=0

n−1

��1j���− 1�n−jGn−1,u„2 . . . n,1� . . . �j − 1��,

�j + 1�� . . . n�… +� d1̄u�11̄�Gn,u�1̄2 . . . n,1� . . . n�� .

�B19�

If we act with i�t1̄
−h�1̄� on both sides of Eq. �B17� and

subsequently use Eqs. �B19�, �B16�, and �B18� we obtain

�i�t1̄
− h�1̄��Gu,V�1̄1̄�� = ��1̄1̄�� +� d2u�1̄2�Gu,V�21̄��

−
i

2
� d�234�V�1̄234�G2,u,V�4321̄�� .

�B20�

This is the equation of motion for the Green function used in
Sec. IV. Again by differentiating this equation with respect to
u we obtain the hierarchy equations for the higher order
Green functions Gn,u,V.

APPENDIX C: FEYNMAN RULES FOR THE
TWO-PARTICLE GREEN FUNCTION

In this section we give a brief summary of the Feynman
rules for the two-particle Green function G2 within the Hu-
genholtz diagram technique.25–28 The general structure of the
two-particle Green function is as given in Fig. 3. The Green
function G2�1234� is written with the points �1234� posi-
tioned clockwise on four corners of the diagram where cor-
ners 1 and 2 are connected to outgoing lines and corners 3
and 4 are connected to ingoing lines. If one expands the
evolution operators in the definition of G2 in powers of the
interaction V one finds for the diagrams the following rules:

�1� Every Green function line �contraction according to
Wick’s theorem� gives a factor iG.

�2� Every vertex gives a factor −iV.
�3� Every closed loop of Green function lines gives a

minus sign, i.e., we have a factor �−1�l where l is the number
of closed loops. To find the number of loops one must re-
place the Hugenholtz vertex by the first term on the right-
hand side of Fig. 2 �with the same labeling� and count the
number of loops that appear in this way.

�4� A line starting at 3 and ending at 1 gives a minus sign,
i.e., we have a factor �−1�L13 where L13=1 when 1 and 3 are
connected and zero otherwise. To determine the connectivity
it is necessary that one again first replaces the Hugenholtz
vertex by the first term on the right-hand side of Fig. 2 �see
also Ref. 27�.

�5� Two Green function lines �so-called equivalent lines�
starting from a given vertex and ending both on the same
vertex give a factor 1

2 , i.e., we have a factor 2−p where p is
the number of equivalent lines.

�6� There is a factor �−i�2 from the definition of G2.
From these rules we find that the overall prefactor of a G2

diagram with n vertices is given by in�−1�l+L132−p. For ex-
ample, Figs. 6�a�–6�f� have prefactors 1, −1, i, − 1

2 , 1, and −1,
respectively.

TOTAL ENERGIES FROM VARIATIONAL FUNCTIONALS… PHYSICAL REVIEW B 74, 195105 �2006�

195105-19



1 T. Helgaker, P. Jørgensen, and J. Olsen, Molecular Electronic-
Structure Theory �Wiley, New York, 2000�.

2 R. M. Dreizler and E. K. U. Gross, Density Functional Theory:
An Approach to the Many-Body Problem �Springer, Berlin,
1990�.

3 J. P. Perdew and S. Kurth, in A Primer in Density Functional
Theory, edited by C. Fiolhais, F. Nogueira, and M. Marques,
Lecture Notes in Physics Vol. 620 �Springer, Berlin, 2003�.

4 N. E. Dahlen and U. von Barth, J. Chem. Phys. 120, 6826 �2004�.
5 N. E. Dahlen and U. von Barth, Phys. Rev. B 69, 195102 �2004�.
6 N. E. Dahlen, R. van Leeuwen, and U. von Barth, Int. J. Quantum

Chem. 101, 512 �2005�.
7 N. E. Dahlen and R. van Leeuwen, J. Chem. Phys. 122, 164102

�2005�.
8 N. E. Dahlen, R. van Leeuwen, and U. von Barth, Phys. Rev. A

73, 012511 �2006�.
9 C.-O. Almbladh, U. von Barth, and R. van Leeuwen, Int. J. Mod.

Phys. B 13, 535 �1999�.
10 L. M. Luttinger and J. C. Ward, Phys. Rev. 118, 1417 �1960�.
11 V. Janiš, cond-mat/9806118 �unpublished�.
12 V. Janiš, Phys. Rev. B 60, 11345 �1999�.
13 F. Aryasetiawan, T. Miyake, and K. Terakura, Phys. Rev. Lett. 88,

166401 �2002�.
14 M. Potthoff, Eur. Phys. J. B 32, 429 �2003�.
15 M. Potthoff, M. Aichhorn, and C. Dahnken, Phys. Rev. Lett. 91,

206402 �2003�.
16 V. Janiš, J. Phys.: Condens. Matter 15, L311 �2003�.
17 L. Hedin, Phys. Rev. 139, A796 �1965�.
18 M. Hindgren, Ph.D. thesis, University of Lund, 1997.
19 R. Chitra and G. Kotliar, Phys. Rev. B 63, 115110 �2001�.
20 S. Y. Savrasov and G. Kotliar, Phys. Rev. B 69, 245101 �2004�.
21 N.-H. Tong, Phys. Rev. B 72, 115104 �2005�.
22 G. Kotliar, S. Y. Savrasov, K. Haule, V. S. Oudovenko, O. Par-

collet, and C. A. Marianetti, Rev. Mod. Phys. 78, 865 �2006�.
23 M. I. Katsnelson and A. I. Lichtenstein, Eur. Phys. J. B 30, 9

�2002�.
24 A. Georges, G. Kotliar, W. Krauth, and M. Rozenberg, Rev. Mod.

Phys. 68, 13 �1996�.
25 N. M. Hugenholtz, Physica �Utrecht� 23, 481 �1957�.
26 P. Nozières, Theory of Interacting Fermi Systems �Benjamin,

New York, 1964�.
27 J. W. Negele and H. Orland, Quantum Many-Particle Systems

�Addison-Wesley, Reading, MA, 1988�.
28 J.-P. Blaizot and G. Ripka, Quantum Theory of Finite Systems

�MIT Press, Cambridge, MA, 1985�.
29 C. De Dominicis, J. Math. Phys. 3, 983 �1962�.
30 C. De Dominicis, J. Math. Phys. 4, 255 �1963�.
31 C. De Dominicis and P. C. Martin, J. Math. Phys. 5, 14 �1964�.
32 C. De Dominicis and P. C. Martin, J. Math. Phys. 5, 31 �1964�.
33 L. V. Keldysh, Sov. Phys. JETP 20, 1018 �1965�.
34 P. Danielewicz, Ann. Phys. �N.Y.� 152, 239 �1984�.
35 M. Bonitz, Quantum Kinetic Theory �Teubner, Stuttgart, 1998�.
36 For an elementary introduction to the Keldysh formalism, see R.

van Leeuwen, N. E. Dahlen, G. Stefanucci, C.-O. Almbladh, and
U. von Barth, Introduction to the Keldysh Formalism and Appli-
cations to Time-Dependent Density Functional Theory, Lecture
Notes in Physics Vol. 706 �Springer-Verlag, Berlin, 2006�.

37 G. Baym, Phys. Rev. 127, 1391 �1962�.
38 U. von Barth, N. E. Dahlen, R. van Leeuwen, and G. Stefanucci,

Phys. Rev. B 72, 235109 �2005�.
39 R. van Leeuwen, Phys. Rev. Lett. 80, 1280 �1998�.
40 P. C. Martin and J. Schwinger, Phys. Rev. 115, 1342 �1959�.
41 E. Runge, E. K. U. Gross, and O. Heinonen, Many-Particle

Theory �Adam-Hilger, Bristol, 1991�.
42 R. Kubo, J. Phys. Soc. Jpn. 12, 570 �1957�.
43 D. Semkat, D. Kremp, and M. Bonitz, Phys. Rev. E 59, 1557

�1999�.
44 N. E. Bickers and S. R. White, Phys. Rev. B 43, 8044 �1991�.
45 N.-H. Kwong and M. Bonitz, Phys. Rev. Lett. 84, 1768 �2000�.
46 R. van Leeuwen and N. E. Dahlen, in The Electron Liquid Para-

digm in Condensed Matter Physics, Proceedings of the Interna-
tional School of Physics “Enrico Fermi” Course CLVII, edited
by G. F. Guiliani and G. Vignale �IDS Press, Amsterdam, 2004�.

47 C. Bloch, in Studies in Statistical Mechanics, edited by J. de Boer
and G. E. Uhlenbeck �North-Holland, Amsterdam, 1965�, Vol.
III.

48 L. P. Kadanoff and G. Baym, Quantum Statistical Mechanics
�Addison-Wesley, Reading, MA, 1989�.

49 K. Orlewicz, Acta Phys. Pol. A 72, 357 �1987�.

VAN LEEUWEN, DAHLEN, AND STAN PHYSICAL REVIEW B 74, 195105 �2006�

195105-20


