139 research outputs found

    The Spitzer Survey of Interstellar Clouds in the Gould Belt. VI. The Auriga-California Molecular Cloud observed with IRAC and MIPS

    Full text link
    We present observations of the Auriga-California Molecular Cloud (AMC) at 3.6, 4.5, 5.8, 8.0, 24, 70 and 160 micron observed with the IRAC and MIPS detectors as part of the Spitzer Gould Belt Legacy Survey. The total mapped areas are 2.5 sq-deg with IRAC and 10.47 sq-deg with MIPS. This giant molecular cloud is one of two in the nearby Gould Belt of star-forming regions, the other being the Orion A Molecular Cloud (OMC). We compare source counts, colors and magnitudes in our observed region to a subset of the SWIRE data that was processed through our pipeline. Using color-magnitude and color-color diagrams, we find evidence for a substantial population of 166 young stellar objects (YSOs) in the cloud, many of which were previously unknown. Most of this population is concentrated around the LkHalpha 101 cluster and the filament extending from it. We present a quantitative description of the degree of clustering and discuss the fraction of YSOs in the region with disks relative to an estimate of the diskless YSO population. Although the AMC is similar in mass, size and distance to the OMC, it is forming about 15 - 20 times fewer stars.Comment: (30 pages, 17 figures (2 multipage figures), accepted for publication in ApJ

    Whole genome analysis for 163 gRNAs in Cas9-edited mice reveals minimal off-target activity.

    Get PDF
    Genome editing with CRISPR-associated (Cas) proteins holds exceptional promise for correcting variants causing genetic disease. To realize this promise, off-target genomic changes cannot occur during the editing process. Here, we use whole genome sequencing to compare the genomes of 50 Cas9-edited founder mice to 28 untreated control mice to assess the occurrence of S. pyogenes Cas9-induced off-target mutagenesis. Computational analysis of whole-genome sequencing data detects 26 unique sequence variants at 23 predicted off-target sites for 18/163 guides used. While computationally detected variants are identified in 30% (15/50) of Cas9 gene-edited founder animals, only 38% (10/26) of the variants in 8/15 founders validate by Sanger sequencing. In vitro assays for Cas9 off-target activity identify only two unpredicted off-target sites present in genome sequencing data. In total, only 4.9% (8/163) of guides tested have detectable off-target activity, a rate of 0.2 Cas9 off-target mutations per founder analyzed. In comparison, we observe ~1,100 unique variants in each mouse regardless of genome exposure to Cas9 indicating off-target variants comprise a small fraction of genetic heterogeneity in Cas9-edited mice. These findings will inform future design and use of Cas9-edited animal models as well as provide context for evaluating off-target potential in genetically diverse patient populations

    Endogenous production of IL-1B by breast cancer cells drives metastasis and colonisation of the bone microenvironment

    Get PDF
    Background: Breast cancer bone metastases are incurable highlighting the need for new therapeutic targets. After colonizing bone, breast cancer cells remain dormant, until signals from the microenvironment stimulate outgrowth into overt metastases. Here we show that endogenous production of IL-1B by tumor cells drives metastasis and growth in bone. Methods: Tumor/stromal IL-B and IL-1R1 expression was assessed in patient samples and effects of the IL-1R antagonist, Anakinra or the IL-1B antibody Canakinumab on tumor growth and spontaneous metastasis were measured in a humanized mouse model of breast cancer bone metastasis. Effects of tumor cell-derived IL-1B on bone colonisation and parameters associated with metastasis were measured in MDA-MB-231, MCF7 and T47D cells transfected with IL-1B/control. Results: In tissue samples from >1300 patients with stage II/III breast cancer, IL-1B in tumor cells correlated with relapse in bone (hazard ratio 1.85; 95% CI 1.05-3.26; P=0.02) and other sites (hazard ratio 2.09; 95% CI 1.26-3.48; P=0.0016). In a humanized model of spontaneous breast cancer metastasis to bone, Anakinra or Canakinumab reduced metastasis and reduced the number of tumor cells shed into the circulation. Production of IL-1B by tumor cells promoted EMT (altered E-Cadherin, N-Cadherin and G-Catenin), invasion, migration and bone colonisation. Contact between tumor and osteoblasts or bone marrow cells increased IL-1B secretion from all three cell types. IL-1B alone did not stimulate tumor cell proliferation. Instead, IL-1B caused expansion of the bone metastatic niche leading to tumor proliferation. Conclusion: Pharmacological inhibition of IL-1B has potential as a novel treatment for breast cancer metastasis

    A large scale hearing loss screen reveals an extensive unexplored genetic landscape for auditory dysfunction

    Get PDF
    The developmental and physiological complexity of the auditory system is likely reflected in the underlying set of genes involved in auditory function. In humans, over 150 non-syndromic loci have been identified, and there are more than 400 human genetic syndromes with a hearing loss component. Over 100 non-syndromic hearing loss genes have been identified in mouse and human, but we remain ignorant of the full extent of the genetic landscape involved in auditory dysfunction. As part of the International Mouse Phenotyping Consortium, we undertook a hearing loss screen in a cohort of 3006 mouse knockout strains. In total, we identify 67 candidate hearing loss genes. We detect known hearing loss genes, but the vast majority, 52, of the candidate genes were novel. Our analysis reveals a large and unexplored genetic landscape involved with auditory function
    corecore