542 research outputs found

    Antimicrobial and anti-inflammatory activity of chitosan-alginate nanoparticles: a targeted therapy for cutaneous pathogens.

    Get PDF
    Advances in nanotechnology have demonstrated potential application of nanoparticles (NPs) for effective and targeted drug delivery. Here we investigated the antimicrobial and immunological properties and the feasibility of using NPs to deliver antimicrobial agents to treat a cutaneous pathogen. NPs synthesized with chitosan and alginate demonstrated a direct antimicrobial activity in vitro against Propionibacterium acnes, the bacterium linked to the pathogenesis of acne. By electron microscopy (EM) imaging, chitosan-alginate NPs were found to induce the disruption of the P. acnes cell membrane, providing a mechanism for the bactericidal effect. The chitosan-alginate NPs also exhibited anti-inflammatory properties as they inhibited P. acnes-induced inflammatory cytokine production in human monocytes and keratinocytes. Furthermore, benzoyl peroxide (BP), a commonly used antiacne drug, was effectively encapsulated in the chitosan-alginate NPs and demonstrated superior antimicrobial activity against P. acnes compared with BP alone while demonstrating less toxicity to eukaryotic cells. Together, these data suggest the potential utility of topical delivery of chitosan-alginate NP-encapsulated drug therapy for the treatment of dermatologic conditions with infectious and inflammatory components

    Propionibacterium acnes bacteriophages display limited genetic diversity and broad killing activity against bacterial skin isolates.

    Get PDF
    UnlabelledInvestigation of the human microbiome has revealed diverse and complex microbial communities at distinct anatomic sites. The microbiome of the human sebaceous follicle provides a tractable model in which to study its dominant bacterial inhabitant, Propionibacterium acnes, which is thought to contribute to the pathogenesis of the human disease acne. To explore the diversity of the bacteriophages that infect P. acnes, 11 P. acnes phages were isolated from the sebaceous follicles of donors with healthy skin or acne and their genomes were sequenced. Comparative genomic analysis of the P. acnes phage population, which spans a 30-year temporal period and a broad geographic range, reveals striking similarity in terms of genome length, percent GC content, nucleotide identity (>85%), and gene content. This was unexpected, given the far-ranging diversity observed in virtually all other phage populations. Although the P. acnes phages display a broad host range against clinical isolates of P. acnes, two bacterial isolates were resistant to many of these phages. Moreover, the patterns of phage resistance correlate closely with the presence of clustered regularly interspaced short palindromic repeat elements in the bacteria that target a specific subset of phages, conferring a system of prokaryotic innate immunity. The limited diversity of the P. acnes bacteriophages, which may relate to the unique evolutionary constraints imposed by the lipid-rich anaerobic environment in which their bacterial hosts reside, points to the potential utility of phage-based antimicrobial therapy for acne.ImportancePropionibacterium acnes is a dominant member of the skin microflora and has also been implicated in the pathogenesis of acne; however, little is known about the bacteriophages that coexist with and infect this bacterium. Here we present the novel genome sequences of 11 P. acnes phages, thereby substantially increasing the amount of available genomic information about this phage population. Surprisingly, we find that, unlike other well-studied bacteriophages, P. acnes phages are highly homogeneous and show a striking lack of genetic diversity, which is perhaps related to their unique and restricted habitat. They also share a broad ability to kill clinical isolates of P. acnes; phage resistance is not prevalent, but when detected, it appears to be conferred by chromosomally encoded immunity elements within the host genome. We believe that these phages display numerous features that would make them ideal candidates for the development of a phage-based therapy for acne

    Agents affecting radio-sensitivity of mouse tumors

    Get PDF

    Utilizing time series analysis to forecast long-term electrical consumption

    Get PDF
    Developing an accurate forecast model for the amount of power consumed will include such factors as time of day, day of the year, the weather, among many others. Based upon these given factors, current models use a neural network approach to forecast in the very near future. For the purpose of business operations, this model should be accurate for predicting power usage at least six months into the future. Using regression with time series analysis, the goal is to build a model that re°ects systematic movements in the data and predict them so errors would be more or less random and minimized

    IL-12 Expands and Differentiates Human Vγ2Vδ2 T Effector Cells Producing Antimicrobial Cytokines and Inhibiting Intracellular Mycobacterial Growth

    Get PDF
    While IL-12 plays a key role in differentiation of protective CD4+ Th1 response, little is known about mechanisms whereby IL-12 differentiates other T-cell populations. Published studies suggest that predominant Vγ2Vδ2 T cells in humans/nonhuman primates (NHP) are a fast-acting T-cell subset, with capacities to rapidly expand and produce Th1 and cytotoxic cytokines in response to phosphoantigen (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP) produced by Mycobacterium tuberculosis (Mtb) or others. However, whether IL-12 signaling pathway mediates fast-acting and Th1 or anti-microbial features of Vγ2Vδ2 T cells remains poorly defined. Here, we show that IL-12, but not other IL-12 family members IL-27/IL-35, apparently expanded HMBPP-activated Vγ2Vδ2 T cells. Although IL-12 and IL-2 similarly expanded HMBPP-activated Vγ2Vδ2 T-cell clones, the IL-12-induced expansion did not require endogenous IL-2 or IL-2 co-signaling during HMBPP + IL-12 co-treatment. IL-12-induced expansion of Vγ2Vδ2 T cells required the PI3K/AKT and STAT4 activation pathways and endogenous TNF-α signaling but did not involve p38/MAPK or IFN-γ signals. IL-12-expanded Vγ2Vδ2 T cells exhibited central/effector memory phenotypes and differentiated into polyfunctional effector cell subtypes which expressed TBX21/T-bet, antimicrobial cytokines IFN-γ, TNF-α, GM-CSF, and cytotoxic granule molecules. Furthermore, the IL-12-expanded Vγ2Vδ2 T cells inhibited the growth of intracellular mycobacteria in IFN-γ- or TNF-α-dependent fashion. Our findings support the concept that IL-12 drives early development of fast-acting Vγ2Vδ2 T effector cells in antimicrobial immune responses

    Identification of genes encoding antimicrobial proteins in Langerhans cells

    Get PDF
    Langerhans cells (LCs) reside in the epidermis where they are poised to mount an antimicrobial response against microbial pathogens invading from the outside environment. To elucidate potential pathways by which LCs contribute to host defense, we mined published LC transcriptomes deposited in GEO and the scientific literature for genes that participate in antimicrobial responses. Overall, we identified 31 genes in LCs that encode proteins that contribute to antimicrobial activity, ten of which were cross-validated in at least two separate experiments. Seven of these ten antimicrobial genes encode chemokines
    corecore