198 research outputs found

    Trimethylsulfonium Methanesulfonate

    Get PDF
    In the title compound, C3H9S+.CH3O3S-, a thermal decomposition product of dimethyl sulfoxide, both cation and anion lie on mirror planes. In the cation, the S atom lies 0.792 (2) Å out of the plane defined by the three C atoms, with S-C distances of 1.781 (2) and 1.786 (3) Å. In the anion, the S-O distances are 1.4556 (14) and 1.4646 (19) Å, and the S-C distance is 1.759 (3) Å

    A First-Tier Framework for Assessing Toxicological Risk from Vaporized Cannabis Concentrates

    Get PDF
    Vaporization is an increasingly prevalent means to consume cannabis, but there is little guidance for manufacturers or regulators to evaluate additive safety. This paper presents a first-tier framework for regulators and cannabis manufacturers without significant toxicological expertise to conduct risk assessments and prioritize additives in cannabis concentrates for acceptance, elimination, or further evaluation. Cannabinoids and contaminants (e.g., solvents, pesticides, etc.) are excluded from this framework because of the complexity involved in their assessment; theirs would not be a first-tier toxicological assessment. Further, several U.S. state regulators have provided guidance for major cannabinoids and contaminants. Toxicological risk assessment of cannabis concentrate additives, like other types of risk assessment, includes hazard assessment, dose–response, exposure assessment, and risk characterization steps. Scarce consumption data has made exposure assessment of cannabis concentrates difficult and variable. Previously unpublished consumption data collected from over 54,000 smart vaporization devices show that 50th and 95th percentile users consume 5 and 57 mg per day on average, respectively. Based on these and published data, we propose assuming 100 mg per day cannabis concentrate consumption for first-tier risk assessment purposes. Herein, we provide regulators, cannabis manufacturers, and consumers a preliminary methodology to evaluate the health risks of cannabis concentrate additives

    Detecting Specific Saccharides via a Single Indicator

    Get PDF
    An improved synthesis of a rhodamine boronic acid indicator is reported. This compound is used in an optimized data collection protocol for wavelength- and time-dependent selectivity of sugars such as fructose and ribose derivatives. One indicator is thus used to selectively distinguish structurally related sugar analytes

    Mechanistic Rationale for Ketene Formation During Dabbing and Vaping

    Get PDF
    Ketene is one of the most toxic vaping emissions identified to date. However, its high reactivity renders it relatively challenging to identify. In addition, certain theoretical studies have shown that realistic vaping temperature settings may betoo low to produce ketene. Each of these issues is addressed herein. First, an isotopically labeled acetate precursor is used for the identification of ketene with enhanced rigor in vaped aerosols. Second, discrepancies between theoretical and experimental findings are explained by accounting for the effects of aerobic (experimental) versus anaerobic (simulated and theoretical) pyrolysis conditions. This finding is also relevant to explaining the relatively low-temperature production of aerosol toxicants beyond ketene. Moreover, the study presented herein shows that ketene formation during vaping is not limited to molecules possessing a phenyl acetate substructure. This means that ketene emission during vaping, including from popular flavorants such as ethyl acetate, may be more prevalent than is currently known

    Determination of Enantiomeric Compositions of Analytes Using Novel Fluorescent Chiral Molecular Micelles and Steady State Fluorescence Measurements

    Get PDF
    Novel fluorescent chiral molecular micelles (FCMMs) were synthesized, characterized, and employed as chiral selectors for enantiomeric recognition of non-fluorescent chiral molecules using steady state fluorescence spectroscopy. The sensitivity of the fluorescence technique allowed for investigation of low concentrations of chiral selector (3.0 x 10(-5) M) and analyte (5.0 x 10(-6) M) to be used in these studies. The chiral interactions of glucose, tartaric acid, and serine in the presence of FCMMs poly(sodium N-undecanoyl-L-tryptophanate) [poly-L-SUW], poly(sodium N-undecanoyl-L-tyrosinate) [poly-L-SUY], and poly(sodium N-undecanoyl-L-phenylalininate) [poly-SUF] were based on diastereomeric complex formation. Poly-L-SUW had a significant fluorescence emission spectral difference as compared to poly-L-SUY and poly-L-SUF for the enantiomeric recognition of glucose, tartaric acid, and serine. Studies with the hydrophobic molecule alpha-pinene suggested that poly-L-SUY and poly-L-SUF had better chiral discrimination ability for hydrophobic analytes as compared to hydrophilic analytes. Partial-least-squares regression modeling (PLS-1) was used to correlate changes in the fluorescence emission spectra of poly-L-SUW due to varying enantiomeric compositions of glucose, tartaric acid, and serine for a set of calibration samples. Validation of the calibration regression models was determined by use of a set of independently prepared samples of the same concentration of chiral selector and analyte with varying enantiomeric composition. Prediction ability was evaluated by use of the root-mean-square percent relative error (RMS%RE) and was found to range from 2.04 to 4.06%

    Chiral Recognition of Amino Acids by Use of a Fluorescent Resorcinarene

    Get PDF
    The spectroscopic properties of a chiral boronic acid based resorcinarene macrocycle employed for chiral analysis were investigated. Specifically, the emission and excitation characteristics of tetraarylboronate resorcinarene macrocycle (TBRM) and its quantum yield were evaluated. The chiral selector TBRM was investigated as a chiral reagent for the enantiomeric discrimination of amino acids using steady-state fluorescence spectroscopy. Chiral recognition of amino acids in the presence of the macrocycle was based on diastereomeric complexes. Results demonstrated that TBRM had better chiral discrimination ability for lysine as compared to the other amino acids. Partial least squares regression modeling (PLS-1) of spectral data for macrocycle-lysine guest-host complexes was used to correlate the changes in the fluorescence emission for a set of calibration samples consisting of TBRM in the presence of varying enantiomeric compositions of lysine. In addition, validation studies were performed using an independently prepared set of samples with different enantiomeric compositions of lysine. The results of multivariate regression modeling indicated good prediction ability of lysine, which was confirmed by a root mean square percent relative error (RMS%RE) of 5.8%

    Organometallic Iron(III)-Salophene Exerts Cytotoxic Properties in Neuroblastoma Cells via MAPK Activation and ROS Generation

    Get PDF
    The objective of the present study was to investigate the specific effects of Iron(III)-salophene (Fe-SP) on viability, morphology, proliferation, cell cycle progression, ROS generation and pro-apoptotic MAPK activation in neuroblastoma (NB) cells. A NCI-DTP cancer screen revealed that Fe-SP displayed high toxicity against cell lines of different tumor origin but not tumor type-specificity. In a viability screen Fe-SP exhibited high cytotoxicity against all three NB cell lines tested. The compound caused cell cycle arrest in G1 phase, suppression of cells progressing through S phase, morphological changes, disruption of the mitochondrial membrane depolarization potential, induction of apoptotic markers as well as p38 and JNK MAPK activation, DNA degradation, and elevated generation of reactive oxygen species (ROS) in SMS-KCNR NB cells. In contrast to Fe-SP, non-complexed salophene or Cu(II)-SP did not raise ROS levels in NB or SKOV-3 ovarian cancer control cells. Cytotoxicity of Fe-SP and activation of caspase-3, -7, PARP, pro-apoptotic p38 and JNK MAPK could be prevented by co-treatment with antioxidants suggesting ROS generation is the primary mechanism of cytotoxic action. We report here that Fe-SP is a potent growth-suppressing and cytotoxic agent for in vitro NB cell lines and, due to its high tolerance in previous animal toxicity studies, a potential therapeutic drug to treat NB tumors in vivo

    Comparison of Chemotherapeutic Activities of Rhodamine-Based GUMBOS and NanoGUMBOS

    Get PDF
    Rhodamine derivatives have been widely investigated for their mitochondrial targeting and chemotherapeutic properties that result from their lipophilic cationic structures. In previous research, we have found that conversion of Rhodamine 6G into nanoGUMBOS, i.e., nanomaterials derived from a group of uniform materials based on organic salts (GUMBOS), led to selective chemotherapeutic toxicity for cancer cells over normal cells. Herein, we investigate the chemotherapeutic activity of GUMBOS derived from four different rhodamine derivatives, two bearing an ester group, i.e., Rhodamine 123 (R123) and SNAFR-5, and two bearing a carboxylic acid group, i.e., rhodamine 110 (R110) and rhodamine B (RB). In this study, we evaluate (1) relative hydrophobicity via octanol–water partition coefficients, (2) cytotoxicity, and (3) cellular uptake in order to evaluate possible structure–activity relationships between these different compounds. Intriguingly, we found that while GUMBOS derived from R123 and SNAFR-5 formed nanoGUMBOS in aqueous medium, no distinct nanoparticles are observed for RB and R110 GUMBOS. Further investigation revealed that the relatively high water solubility of R110 and RB GUMBOS hinders nanoparticle formation. Subsequently, while R123 and SNAFR-5 displayed selective chemotherapeutic toxicity similar to that of previously investigated R6G nanoGUMBOS, the R110 and RB GUMBOS were lacking in this property. Additionally, the chemotherapeutic toxicities of R123 and SNAFR-5 nanoGUMBOS were also significantly greater than R110 and RB GUMBOS. Observed results were consistent with decreased cellular uptake of R110 and RB as compared to R123 and SNAFR-5 compounds. Moreover, these results are also consistent with previous observations that suggest that nanoparticle formation is critical to the observed selective chemotherapeutic properties as well as the chemotherapeutic efficacy of rhodamine nanoGUMBOS

    Varied Length Stokes Shift BODIPY-Based Fluorophores for Multicolor Microscopy

    Get PDF
    Multicolor microscopy tools necessary to localize and visualize the complexity of subcellular systems are limited by current fluorophore technology. While commercial fluorophores cover spectral space from the ultraviolet to the near infrared region and are optimized for conventional bandpass based fluorescence microscopy, they are not ideal for highly multiplexed fluorescence microscopy as they tend to have short Stokes shifts, restricting the number of fluorophores that can be detected in a single sample to four to five. Herein, we synthesized a library of 95 novel boron-dipyrromethene (BODIPY)- based fluorophores and screened their photophysical, optical and spectral properties for their utility in multicolor microscopy. A subset of our BODIPY-based fluorophores yielded varied length Stokes shifts probes, which were used to create a five-color image using a single excitation with confocal laser scanning microscopy for the first time. Combining these novel fluorophores with conventional fluorophores could facilitate imaging in up to nine to ten colors using linear unmixing based microscopy approaches

    Из опыта работы кафедры по организации учебной и воспитательной работы с иностранными студентами

    Get PDF
    Одна из ярких черт современного высшего образования - его интернационализация. Для Брестского государственного университета имени А.С. Пушкина в процессе интернационализации одним из новых, но перспективных её направлений является экспорт образовательных услуг. Появление в университете данной категории обучающихся (с 2007 г.) внесло коррективы и в организацию учебного процесса, и во внеучебную деятельность
    corecore