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Detecting specific saccharides via a single indicatort#

Soojin Lim, Jorge O. Escobedo, Mark Lowry, and Robert M. Strongin
Department of Chemistry, Portland State University, Portland, Oregon 97207, USA.

Abstract

An improved synthesis of a rhodamine boronic acid indicator is reported. This compound is used
in an optimized data collection protocol for wavelength- and time-dependent selectivity of sugars
such as fructose and ribose derivatives. One indicator is thus used to selectively distinguish
structurally related sugar analytes.

The development of simple optical indicators is of great current interest for the detection of
small molecule disease biomarkers.! Selective detection is usually attributed to the
distinctive interaction between the analyte and indicator or receptor. However, several
indicator-biomolecule complexes may co-exist in a dynamic equilibrium. This is particularly
relevant in complex natural sample matrices and wherein supramolecular or reversible
covalent interactions are the basis of the analyte-selective signaling. Although the presence
of a variety of indicator-bound species may hinder selective detection, the structural
differences between the various complexes may afford distinctive absorption and emission
profiles, thereby potentially allowing for multianalyte detection viaa single optical
indicator. Herein we propose that by judicious selection of specific excitation and emission
wavelengths one may use a single indicator dye for the tunable detection of specific
saccharides. The use of wavelength switching, rather than indicator or receptor structure
changes, embodies a relatively streamlined approach to chemosensing.

In 2006 we published the first report of a boronic acid indicator (1) that was more selective
for ribose, adenosine, nucleosides and nucleotides (including AICAr, the commercially
available model succinylpurine metabolite for the rare autism spectrum disorder ADSL
deficiency,? Fig. 1) as compared to fructose, the compound for which typical boronic acid
compounds are inherently selective.3 More recently, 1 has been used as a fluorescence turn-
on probe to visualize specific tetraserine motifs in peptides and proteins in live cells.*

Probing the mechanism for attaining unique selectivity towards ribose and congeners using
1 as a platform has been of ongoing interest in our labs. This effort is in order to aid the
design of indicators for specific nucleosides as well as thiol-derived biomarkers® of
methylation status and oxidative stress (e.g., SAM and SAH).8 As part of the current study
we report an improved preparation of 1 (Scheme 1) v/aa one-pot microwave-assisted
synthesis. Conversion to 1 occurs with better yield (70%) and reaction time (20 min
compared to > 24 h previously).” It is obtained v7a filtration of the product mixture rather
than via the previously reported chromatographic methods (Scheme 1).

TThis article is part of the ChemComm ‘Supramolecular chemistry’ web themed issue marking the International Year of Chemistry

2011.

*Electronic supplementary information (ESI) available: Synthesis and characterization data of compound 1, additional spectral and
computational data.

© The Royal Society of Chemistry 2011
Correspondence to: Robert M. Strongin.
strongin@pdx.edu; Fax: +1 503-725-9525; Tel: +1 503-725-9724.
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Typically, an excitation wavelength near the absorption maximum of a dye is selected for
chemosensing. However, relying on the absorption maximum of an indicator in a buffer
solution that does not contain analytes or potential interferences may not be optimal. For
example, the optimum excitation wavelength for our recently developed fluorogenic a.,p-
unsaturated monoaldehyde-based sensor for biological thiols was found to be different than
the maximum absorption.> Accordingly, we find that solutions of 1 containing various
analytes, when monitored over time at several different excitation and emission
wavelengths, affords us large multidimensional data sets specific for various analytes. A
subset of this data is presented in Fig. 2. According to the contour plots of excitation-
emission matrices (EEMs) obtained in the excitation range 470 to 620 nm and emission
range from 520 to 690 nm, solutions of 1, and 1 with various analytes, display patterns
which are distinguishable for each analyte. There are differences in fluorescence intensity;
however, there are also clearly different spectral signatures. For example, consistent with
our previous observations of the selectivity of 1 toward ribose when excited at 565 nm,3 Fig.
2 reveals a relatively higher emission response for the riboside AICAr and SAM as
compared to fructose in the emission region near 600 nm when excited near 565 nm. We
have shown previously that the small non-specific interference from fructose signal in this
wavelength region can be removed v/athe addition of non-fluorescent boronic acid
derivatives.3 However, we were surprised to note that 1 responded to fructose in a different
spectral region (emission at ca. 550 nm) when excited near 510 nm.

This observation makes the specific detection of fructose, in addition to ribose derivatives,
possible with this probe. Data were collected as EEMs as a function of time. From this large
multidimensional data set, spectra can be extracted at a specific times or the intensity at a
specific wavelength monitored as a function of time. These data provide specific analyte
dependent features such as the excitation and emission wavelengths resulting in the greatest
signal and the time at which this signal occurs. For example, compound 1 responds to
fructose in a different spectral region than ribose-derivatives, 7.e. near 550 nm when excited
at shorter wavelength near 510 nm in a time dependent manner with the peak increasing
over time. When plotted as a function of time at an excitation wavelength of 510 nm, ribose
derivative-1 solutions do not exhibit a significant emission response in this region (see
supporting information). Fig. 3 demonstrates that 1 displays an increased response toward
both AICAr or fructose as a function of time and wavelength. It also shows the selectivity of
1 for SAM versus SAH. The ratio of SAM:SAH is frequently used as an indicator of cellular
methylation potential.® Interestingly, SAM and SAH can be distinguished from AICAr by a
wavelegnth shift of approximately 10 nm in both excitation and emssion (Agx = 560 nm,
Aem = 587.5 nm) as can be seen in the contour plots of these analytes in Fig. 2 and 3.

The most dramatic example of time and wavelength dependent detection in using a single
indicator is shown in Fig. 4. It is constructed simply by scanning the EEM of each solution
every 4 min for 1 h. One can visually distinguish each of the analyte-1 solutions
qualitatively (Fig. 4A). Initial results also indicate that the system will function in a more
complex setting, 7.e. when two analytes are present at the same time. As proof of concept,
mixtures of two analytes (fructose and AICAr) were investigated. Sample mixtures enriched
in either AICAr or fructose display signatures of both individual analytes but with features
of the major analyte more dominant. Although the response is complicated, advanced data
processing (7.e. chemometrics) should simplify interpretation. efforts to quantify mixtures
are ongoing. Work is also ongoing to better understand the dynamic processes including
supramolecular and reversible covalent interaction involved in these unique analyte
dependent signals and their changes over time. Our previous studies attributed the selectivity
of the compound 1 emission upon excitation at 565 nm to the fact that its ribose complex
can exhibit tighter binding to the fluorophore as compared to the corresponding fructose and
glucose complexes.® Simulations showed that this can occur viaa charged hydrogen bond to



Limetal.

Page 3

the carboxylate moiety of 1. Favorable ion pairing interactions are thus likely responsible for
the differences in the response of 1 toward the relatively positive SAM compared to SAH.
Energy minimization studies afford an analogous explanation for the selectivity for AICAr
over fructose (570 nm excitation, Fig. 3) that involves AICAr-1 extended intramolecular
interactions of the aminoimidazole carboxamide moeity with both, the carboxylate oxygen
and the remaining free boronic acid (Fig. 5).

In conclusion, we have developed an improved synthesis of 1 v/a a microwave-assisted
reductive amination and an optimal data collection method for wavelength-time dependent
selectivity via EEMSs. The results herein show that it is possible to use such data sets to
develop strategies for allowing one indicator to be used to selectively distinguish structurally
related sugar analytes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Ribose-containing molecules studied herein.
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Fig. 2.

EEMSs demonstrating the response of 1 towards various analytes. (A) 1 at 31 min, (B) 1 plus
AICAr at 31 min, (C) 1 plus fructose at 58 min, and (D) 1 plus SAM at 11 min. The x-axis
represents emission wavelength while the y-axisis excitation wavelength such that vertical
and horizontal slices represent typical excitation and emission spectra respectively.
Excitation and emission step sizes of 10 nm and 2.5 nm, respectively with a band pass of 5
nm for each. Fluorescence intensity is represented on the z-axis as various colors. Final
concentration of 1 was 20 .M with each analyte at a concentration of 100 M in 90%
DMSO : 10% 25 M pH 7.5 phosphate buffer. One part aqueous analyte was added to 9
parts 1 in DMSO followed by 15 s vortexing. EEMs were collected sequentially every 4 min
for 1 h.



Limetal.

Page 6
2000 e CONErOl €X@570nM, time=31min
e AICAT €X@570nm, time=31min
fructose, ex@570nm, time=31min
1500 4 = = = «control ex@510nm, time=58min
= = = .AICAr ex@510nm, time=58min
:; - = = .fructose ex@510nm, time=58min
2 1000
I3
c -
2 w sy
€ .
5001 s Iy,
E” 3.
¥y
0
—— control ex@560nm, time=11min
—SAM ex@560nm, time=11min
2000 4
- SAH ex@560nm, time=11min
3 1
s 1500
2
[}
£
2 1000
&
500 4
0 T T T T T v T T "
520 540 560 580 600 620 640 660 680 700

wavelength (nm)

Fig. 3.

Emission spectra demonstrating selective response to various analytes. (Top) Control,
AICAr and fructose emission spectra at given excitation wavelengths (510 or 570 nm) and
times (31 or 58 min) after mixing. (Bottom) Control, SAM, and SAH emission spectra upon
excitation at 560 nm and 11 min after mixing. Experimental conditions correspond to those
described in Fig. 2.
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Scheme 1.
Microwave-assisted reaction of compound 1.
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Fig. 4.

Time and wavelength dependent detection. (A) EEMs of control and 1 plus 100 uM of
analyte. (B) EEMs of 1 plus fructose and AICAr mixtures. Total concentration of each
analyte mixture is 100 M. The ratio of fructose to AICAr is increased toward the right as
indicated. The first EEM in time is plotted at the bottom with time increasing toward the top.
Experimental conditions as well as excitation and emission axes correspond to those in Fig.
2.
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Fig. 5.

Energy-minimized model of the boronate ester formed after condensation of one equivalent
of AICAr to 1. Color atom codes: B = yellow, C = white, N = blue, O =red, H = cyan. Only
hydrogen atoms involved in H-bond formation are displayed for simplicity. Dashed lines
represent distance in angstroms.



	Portland State University
	PDXScholar
	2011

	Detecting Specific Saccharides via a Single Indicator
	Soojin Lim
	Jorge O. Escobedo
	Mark Lowry
	Robert M. Strongin
	Let us know how access to this document benefits you.
	Citation Details


	tmp.1397688334.pdf.QeJKb

