22 research outputs found
Pediatric Immunization Practices in Nephrotic Syndrome: An Assessment of Provider and Parental Knowledge
Background: Children with nephrotic syndrome (NS) are at high risk for vaccine-preventable infections due to the immunological effects from the disease and concurrent treatment with immunosuppressive medications. Immunizations in these patients may be deferred due to their immunosuppressive treatment which may increase the risk for vaccine-preventable infections. Immunization practices in children with NS continue to vary among pediatric nephrologists. This raises the question of whether children with NS are receiving the recommended vaccinations at appropriate times. Therefore, it is critical to understand the practices and patient education provided by physicians to patients on the topic of vaccinations.
Methods: After informed consent, parents/guardians of 153 pediatric patients (\u3c18 years old) diagnosed with NS from 2005 to 2018 and 50 pediatric nephrologists from 11 participating centers completed anonymous surveys to evaluate immunization practices among pediatric nephrologists, assess the vaccine education provided to families of children with NS, assess the parental knowledge of immunization recommendations, and assess predictors of polysaccharide pneumococcal vaccine adherence. The Advisory Committee on Immunization Practices (ACIP) Immunization 2019 Guideline for those with altered immunocompetence was used to determine accuracy of vaccine knowledge and practices.
Results: Forty-four percent of providers self-reported adherence to the ACIP guidelines for inactive vaccines and 22% to the guidelines for live vaccines. Thirty-two percent of parents/guardians reported knowledge that aligned with the ACIP guidelines for inactive vaccines and 1% for live vaccines. Subjects residing in the Midwest and provider recommendations for vaccines were positive predictors of vaccine adherence (p \u3c 0.001 and p 0.02, respectively).
Conclusions: Vaccine recommendation by medical providers is paramount in vaccine adherence among pediatric patients with NS. This study identifies potential educational opportunities for medical subspecialty providers and family caregivers about immunization recommendations for immunosuppressed patients
Designing eco-evolutionary experiments for restoration projects: Opportunities and constraints revealed during stickleback introductions.
Eco-evolutionary experiments are typically conducted in semi-unnatural controlled settings, such as mesocosms; yet inferences about how evolution and ecology interact in the real world would surely benefit from experiments in natural uncontrolled settings. Opportunities for such experiments are rare but do arise in the context of restoration ecology-where different "types" of a given species can be introduced into different "replicate" locations. Designing such experiments requires wrestling with consequential questions. (Q1) Which specific "types" of a focal species should be introduced to the restoration location? (Q2) How many sources of each type should be used-and should they be mixed together? (Q3) Which specific source populations should be used? (Q4) Which type(s) or population(s) should be introduced into which restoration sites? We recently grappled with these questions when designing an eco-evolutionary experiment with threespine stickleback (Gasterosteus aculeatus) introduced into nine small lakes and ponds on the Kenai Peninsula in Alaska that required restoration. After considering the options at length, we decided to use benthic versus limnetic ecotypes (Q1) to create a mixed group of colonists from four source populations of each ecotype (Q2), where ecotypes were identified based on trophic morphology (Q3), and were then introduced into nine restoration lakes scaled by lake size (Q4). We hope that outlining the alternatives and resulting choices will make the rationales clear for future studies leveraging our experiment, while also proving useful for investigators considering similar experiments in the future
Depressive Symptoms in Children with Chronic Kidney Disease
To assess depression in children with chronic kidney disease (CKD) and to determine associations with patient characteristics, intellectual and educational levels, and health related quality of life (HRQoL)
Data from: Potential of environmental DNA to evaluate Northern pike (Esox lucius) eradication efforts: an experimental test and case study
Determining the success of invasive species eradication efforts is challenging because populations at very low abundance are difficult to detect. Environmental DNA (eDNA) sampling has recently emerged as a powerful tool for detecting rare aquatic animals; however, detectable fragments of DNA can persist over time despite absence of the targeted taxa and can therefore complicate eDNA sampling after an eradication event. This complication is a large concern for fish eradication efforts in lakes since killed fish can sink to the bottom and slowly decay. DNA released from these carcasses may remain detectable for long periods. Here, we evaluated the efficacy of eDNA sampling to detect invasive Northern pike (Esox lucius) following piscicide eradication efforts in southcentral Alaskan lakes. We used field observations and experiments to test the sensitivity of our Northern pike eDNA assay and to evaluate the persistence of detectable DNA emitted from Northern pike carcasses. We then used eDNA sampling and traditional sampling (i.e., gillnets) to test for presence of Northern pike in four lakes subjected to a piscicide-treatment designed to eradicate this species. We found that our assay could detect an abundant, free-roaming population of Northern pike and could also detect low-densities of Northern pike held in cages. For these caged Northern pike, probability of detection decreased with distance from the cage. We then stocked three lakes with Northern pike carcasses and collected eDNA samples 7, 35 and 70 days post-stocking. We detected DNA at 7 and 35 days, but not at 70 days. Finally, we collected eDNA samples ~ 230 days after four lakes were subjected to piscicide-treatments and detected Northern pike DNA in 3 of 179 samples, with a single detection at each of three lakes, though we did not catch any Northern pike in gillnets. Taken together, we found that eDNA can help to inform eradication efforts if used in conjunction with multiple lines of inquiry and sampling is delayed long enough to allow full degradation of DNA in the water
Potential of Environmental DNA to Evaluate Northern Pike (Esox lucius) Eradication Efforts: An Experimental Test and Case Study.
Determining the success of invasive species eradication efforts is challenging because populations at very low abundance are difficult to detect. Environmental DNA (eDNA) sampling has recently emerged as a powerful tool for detecting rare aquatic animals; however, detectable fragments of DNA can persist over time despite absence of the targeted taxa and can therefore complicate eDNA sampling after an eradication event. This complication is a large concern for fish eradication efforts in lakes since killed fish can sink to the bottom and slowly decay. DNA released from these carcasses may remain detectable for long periods. Here, we evaluated the efficacy of eDNA sampling to detect invasive Northern pike (Esox lucius) following piscicide eradication efforts in southcentral Alaskan lakes. We used field observations and experiments to test the sensitivity of our Northern pike eDNA assay and to evaluate the persistence of detectable DNA emitted from Northern pike carcasses. We then used eDNA sampling and traditional sampling (i.e., gillnets) to test for presence of Northern pike in four lakes subjected to a piscicide-treatment designed to eradicate this species. We found that our assay could detect an abundant, free-roaming population of Northern pike and could also detect low-densities of Northern pike held in cages. For these caged Northern pike, probability of detection decreased with distance from the cage. We then stocked three lakes with Northern pike carcasses and collected eDNA samples 7, 35 and 70 days post-stocking. We detected DNA at 7 and 35 days, but not at 70 days. Finally, we collected eDNA samples ~ 230 days after four lakes were subjected to piscicide-treatments and detected Northern pike DNA in 3 of 179 samples, with a single detection at each of three lakes, though we did not catch any Northern pike in gillnets. Taken together, we found that eDNA can help to inform eradication efforts if used in conjunction with multiple lines of inquiry and sampling is delayed long enough to allow full degradation of DNA in the water
Correction: Potential of Environmental DNA to Evaluate Northern Pike (Esox lucius) Eradication Efforts: An Experimental Test and Case Study.
[This corrects the article DOI: 10.1371/journal.pone.0162277.]
Raw_data
Quantification cycle values and scores for Northern pike DNA in water samples collected at multiple lakes across time
Schematic of the locations of eDNA sampling.
<p>Locations of pre (○)and post (●)-rotenone treatments are identified in Derks, East Mackey, Union, and West Mackey Lakes near Soldotna, AK. Post-treatment samples were collected at all pre-treatment sample locations. The background base map is exclusive property of Environmental Systems Research Institute, Inc. (Esri).</p
Physical habitat and fish stocking data for caged and carcass experiments.
<p>Physical habitat and fish stocking data for caged and carcass experiments.</p