770 research outputs found

    Buy High Sell Low: Redefining Bean Counting in the Coffee Industry for a Sustainable Future

    Get PDF
    Charles Manz returns to the JVBL providing ā€’ together with several fellow researchers/writers ā€’ a case study of a socially responsible business within the coffee industry. Familiar CSR concepts are examined such as Fair Trade and sustainability which foster parity in dealing with buyers while maintaining product quality and reasonable income. The practices of Deanā€™s Beans, a progressive coffee organization, are examined as a notable demonstration of how a business can fiscally succeed while maintaining a commitment to the triple-bottom-line considerations of people, planet, and profits

    Weekly Versus Monthly Testosterone Administration On Fast and Slow Skeletal Muscle Fibers in Older Adult Males

    Get PDF
    Context: In older adults, loss of mobility due to sarcopenia is exacerbated in men with low serum T. T replacement therapy is known to increase muscle mass and strength, but the effect of weekly (WK) vs monthly (MO) administration on specific fiber types is unknown. Objective: To determine the efficacy of WK vs MO T replacement on the size and functional capacity of individual fast and slow skeletal muscle fiber types. Design, Setting, and Patients: Subjects were randomized into a 5-month, double-blind, placebo-controlled trial. All subjects (ages, 61ā€“71 y) were community-dwelling men who had T levels \u3c 500 ng/dL. Intervention: Subjects were dosed weekly for 5 months, receiving continuous T (WK, n = 5; 100 mg T enanthate, im injection), monthly cycled T (MO, n = 7; alternating months of T and placebo), or placebo (n = 7). Muscle biopsies of the vastus lateralis were obtained before and after treatment. Main Outcome Measures: Main outcomes for individual slow and fast fibers included fiber diameter, peak force (P0), rate of tension development, maximal shortening velocity, peak power, and Ca2+ sensitivity. Results: Both treatments increased fiber diameter and peak power, with WK treatment 5-fold more effective than MO in increasing type I fiber P0. WK effects on fiber diameter and force were 1.5-fold higher in slow fibers compared to fast fibers. In fast type II fibers, diameter and P0 increased similarly between treatments. The increased power was entirely due to increased fiber size and force. Conclusions: In conclusion, T replacement effects were fiber-type dependent, restricted to increases in cell size, P0, and peak power, and dependent on the paradigm selected (WK vs MO)

    Annual Survey of Virginia Law: Employment Law

    Get PDF
    This article surveys the judicial and legislative developments in Virginia employment law between June 1990 and June 1991. Developments in the areas of worker\u27s compensation and unemployment compensation, each of which has its own distinctive body of law, are outside the scope of this article

    Bioreactor scalability: laboratory-scale bioreactor design influences performance, ecology, and community physiology in expanded granular sludge bed bioreactors

    Get PDF
    Studies investigating the feasibility of new, or improved, biotechnologies, such as wastewater treatment digesters, inevitably start with laboratory-scale trials. However, it is rarely determined whether laboratory-scale results reflect full-scale performance or microbial ecology. The Expanded Granular Sludge Bed (EGSB) bioreactor, which is a high-rate anaerobic digester configuration, was used as a model to address that knowledge gap in this study. Two laboratory-scale idealizations of the EGSBā€”a one-dimensional and a three- dimensional scale-down of a full-scale designā€”were built and operated in triplicate under near-identical conditions to a full-scale EGSB. The laboratory-scale bioreactors were seeded using biomass obtained from the full-scale bioreactor, and, spent water from the distillation of whisky from maize was applied as substrate at both scales. Over 70 days, bioreactor performance, microbial ecology, and microbial community physiology were monitored at various depths in the sludge-beds using 16S rRNA gene sequencing (V4 region), specific methanogenic activity (SMA) assays, and a range of physical and chemical monitoring methods. SMA assays indicated dominance of the hydrogenotrophic pathway at full-scale whilst a more balanced activity profile developed during the laboratory-scale trials. At each scale, Methanobacterium was the dominant methanogenic genus present. Bioreactor performance overall was better at laboratory-scale than full-scale. We observed that bioreactor design at laboratory-scale significantly influenced spatial distribution of microbial community physiology and taxonomy in the bioreactor sludge-bed, with 1-D bioreactor types promoting stratification of each. In the 1-D laboratory bioreactors, increased abundance of Firmicutes was associated with both granule position in the sludge bed and increased activity against acetate and ethanol as substrates. We further observed that stratification in the sludge-bed in 1-D laboratory-scale bioreactors was associated with increased richness in the underlying microbial community at species (OTU) level and improved overall performance

    Pandemic Paradox: Early Life H2N2 Pandemic Influenza Infection Enhanced Susceptibility to Death during the 2009 H1N1 Pandemic.

    Get PDF
    Recent outbreaks of H5, H7, and H9 influenza A viruses in humans have served as a vivid reminder of the potentially devastating effects that a novel pandemic could exert on the modern world. Those who have survived infections with influenza viruses in the past have been protected from subsequent antigenically similar pandemics through adaptive immunity. For example, during the 2009 H1N1 "swine flu" pandemic, those exposed to H1N1 viruses that circulated between 1918 and the 1940s were at a decreased risk for mortality as a result of their previous immunity. It is also generally thought that past exposures to antigenically dissimilar strains of influenza virus may also be beneficial due to cross-reactive cellular immunity. However, cohorts born during prior heterosubtypic pandemics have previously experienced elevated risk of death relative to surrounding cohorts of the same population. Indeed, individuals born during the 1890 H3Nx pandemic experienced the highest levels of excess mortality during the 1918 "Spanish flu." Applying Serfling models to monthly mortality and influenza circulation data between October 1997 and July 2014 in the United States and Mexico, we show corresponding peaks in excess mortality during the 2009 H1N1 "swine flu" pandemic and during the resurgent 2013-2014 H1N1 outbreak for those born at the time of the 1957 H2N2 "Asian flu" pandemic. We suggest that the phenomenon observed in 1918 is not unique and points to exposure to pandemic influenza early in life as a risk factor for mortality during subsequent heterosubtypic pandemics.IMPORTANCE The relatively low mortality experienced by older individuals during the 2009 H1N1 influenza virus pandemic has been well documented. However, reported situations in which previous influenza virus exposures have enhanced susceptibility are rare and poorly understood. One such instance occurred in 1918-when those born during the heterosubtypic 1890 H3Nx influenza virus pandemic experienced the highest levels of excess mortality. Here, we demonstrate that this phenomenon was not unique to the 1918 H1N1 pandemic but that it also occurred during the contemporary 2009 H1N1 pandemic and 2013-2014 H1N1-dominated season for those born during the heterosubtypic 1957 H2N2 "Asian flu" pandemic. These data highlight the heretofore underappreciated phenomenon that, in certain instances, prior exposure to pandemic influenza virus strains can enhance susceptibility during subsequent pandemics. These results have important implications for pandemic risk assessment and should inform laboratory studies aimed at uncovering the mechanism responsible for this effect

    The Adaptive Cycle As a Lens for Service Learning ā€“ Community Engagement Partnerships

    Get PDF
    This paper deploys the adaptive cycle as a construct to understand the dynamics of community engagement and partnership building during an international service-learning project. A multi-disciplinary team of USA-based university students collaborated with a local community in Zambia to build two ventilated improved pit (VIP) latrines. Post-field project reflection challenged the ā€˜product-firstā€™ view commonly held in service learning projects.Ā  Time was a central point of post-field reflection. Through critical scrutiny, the team came to recognize that contextually sensitive relationship building had been essential in enabling community ownership of the project. Ā The construct of the adaptive cycle provided a crucial analytical tool for tracing the process through which partners from very different backgrounds achieved a sense of common purpose and opened the way for an understanding of community engagement as weaving a thread through the complex dynamics of partnership. The adaptive cycle may be useful in the preparation and implementation framework for other service learning projects emanating from institutions of higher education

    Domestication to Crop Improvement: Genetic Resources for Sorghum and Saccharum (Andropogoneae)

    Get PDF
    Background Both sorghum (Sorghum bicolor) and sugarcane (Saccharum officinarum) are members of the Andropogoneae tribe in the Poaceae and are each other's closest relatives amongst cultivated plants. Both are relatively recent domesticates and comparatively little of the genetic potential of these taxa and their wild relatives has been captured by breeding programmes to date. This review assesses the genetic gains made by plant breeders since domestication and the progress in the characterization of genetic resources and their utilization in crop improvement for these two related species. Genetic Resources The genome of sorghum has recently been sequenced providing a great boost to our knowledge of the evolution of grass genomes and the wealth of diversity within S. bicolor taxa. Molecular analysis of the Sorghum genus has identified close relatives of S. bicolor with novel traits, endosperm structure and composition that may be used to expand the cultivated gene pool. Mutant populations (including TILLING populations) provide a useful addition to genetic resources for this species. Sugarcane is a complex polyploid with a large and variable number of copies of each gene. The wild relatives of sugarcane represent a reservoir of genetic diversity for use in sugarcane improvement. Techniques for quantitative molecular analysis of gene or allele copy number in this genetically complex crop have been developed. SNP discovery and mapping in sugarcane has been advanced by the development of high-throughput techniques for ecoTILLING in sugarcane. Genetic linkage maps of the sugarcane genome are being improved for use in breeding selection. The improvement of both sorghum and sugarcane will be accelerated by the incorporation of more diverse germplasm into the domesticated gene pools using molecular tools and the improved knowledge of these genomes

    Applications for Gradient Metal Alloys Fabricated Using Additive Manufacturing

    Get PDF
    Recently, additive manufacturing (AM) techniques have been developed that may shift the paradigm of traditional metal production by allowing complex net-shaped hardware to be built up layer-by-layer, rather than being machined from a billet. The AM process is ubiquitous with polymers due to their low melting temperatures, fast curing, and controllable viscosity, and 3D printers are widely available as commercial or consumer products. 3D printing with metals is inherently more complicated than with polymers due to their higher melting temperatures and reactivity with air, particularly when heated or molten. The process generally requires a high-power laser or other focused heat source, like an electron beam, for precise melting and deposition. Several promising metal AM techniques have been developed, including laser deposition (also called laser engineered net shaping or LENS and laser deposition technology (LDT)), direct metal laser sintering (DMLS), and electron beam free-form (EBF). These machines typically use powders or wire feedstock that are melted and deposited using a laser or electron beam. Complex net-shape parts have been widely demonstrated using these (and other) AM techniques and the process appears to be a promising alternative to machining in some cases. Rather than simply competing with traditional machining for cost and time savings, the true advantage of AM involves the fabrication of hardware that cannot be produced using other techniques. This could include parts with "blind" features (like foams or trusses), parts that are difficult to machine conventionally, or parts made from materials that do not exist in bulk forms. In this work, the inventors identify that several AM techniques can be used to develop metal parts that change composition from one location in the part to another, allowing for complete control over the mechanical or physical properties. This changes the paradigm for conventional metal fabrication, which relies on an assortment of "post-processing" methods to locally alter properties (such as coating, heat treating, work hardening, shot peening, etching, anodizing, among others). Building the final part in an additive process allows for the development of an entirely new class of metals, so-called "functionally graded metals" or "gradient alloys." By carefully blending feedstock materials with different properties in an AM process, hardware can be developed with properties that cannot be obtained using other techniques but with the added benefit of the net-shaped fabrication that AM allows
    • ā€¦
    corecore