3,493 research outputs found

    Fast magnetization switching of Stoner particles: A nonlinear dynamics picture

    Full text link
    The magnetization reversal of Stoner particles is investigated from the point of view of nonlinear dynamics within the Landau-Lifshitz-Gilbert formulation. The following results are obtained. 1) We clarify that the so-called Stoner-Wohlfarth (SW) limit becomes exact when damping constant is infinitely large. Under the limit, the magnetization moves along the steepest energy descent path. The minimal switching field is the one at which there is only one stable fixed point in the system. 2) For a given magnetic anisotropy, there is a critical value for the damping constant, above which the minimal switching field is the same as that of the SW-limit. 3) We illustrate how fixed points and their basins change under a field along different directions. This change explains well why a non-parallel field gives a smaller minimal switching field and a short switching time. 4) The field of a ballistic magnetization reversal should be along certain direction window in the presence of energy dissipation. The width of the window depends on both of the damping constant and the magnetic anisotropy. The upper and lower bounds of the direction window increase with the damping constant. The window width oscillates with the damping constant for a given magnetic anisotropy. It is zero for both zero and infinite damping. Thus, the perpendicular field configuration widely employed in the current experiments is not the best one since the damping constant in a real system is far from zero.Comment: 10 pages, 9 figures. submitted to PR

    Accuracy Assessment of Recreational and Mapping Grade GPS Receivers

    Get PDF
    Since its development in the early 1970s, Global Positioning System (GPS) technology has become more accessible and affordable for consumers. GPS applications have become ubiquitous in society. With the increased use of GPS, the question of accuracy is of concern. This study assessed the accuracy of four Garmin recreational GPS receivers, eTrex® , eTrex Legend® , eTrex Vista® , GPSMAP® 76CS, and three Trimble® mapping GPS receivers JunoTM , GeoExplorer3TM and GeoXHTM. Thirty-three ground control points (GCPs) were established in three different landscapes using survey grade GPS (Trimble’s 4700) that were corrected using National Geodetic Survey’s Online Positioning User Service (OPUS). Eleven GCPs were established in a forest landscape, eleven near buildings to simulate an urban landscape, and eleven with a clear unobstructed sky. The GPS receivers were tested with the Wide Angle Augmentation System (WAAS) on and off. In addition, results from averaging 30 GPS positions were evaluated. This study showed the GeoXH was the most accurate receiver and that the accuracy of the recreational (Garmin) receivers was from 2.52 to 18.42 meters depending on the landscape. The accuracies of the Garmin GPS receivers were similar

    Solid Freeform Fabrication of Transparent Fused Quartz using a Filament Fed Process

    Get PDF
    Glass is a critical material for many scientific and engineering applications including optics, communications, electronics, and hermetic seals. Despite this technological relevance, there has been minimal research toward Additive Manufacturing (AM) of glass, particularly optically transparent glass. Additive Manufacturing of transparent glass offers potential advantages for lower processing costs for small production volumes, increased design freedom, and the ability to locally vary the optical properties of the part. Compared to common soda lime glass, fused quartz is better for AM since it has lower thermal expansion and higher index homogeneity. This paper presents a study of additive manufacturing of transparent fused quartz by a filament fed process. A CW CO2 laser (10.6 µm) is used to melt glass filaments layer by layer. The laser couples to phononic modes in the glass and is well absorbed. The beam and melt pool are stationary while the work piece is scanned using a standard lab motion system. Representative parts are built to explore the effects of variable laser power on the properties of printed fused quartz. During printing the incandescent emission from the melt pool is measured using a spectrometer. This permits process monitoring and identifies potential chemical changes in the glass during printing. After deposition, the printed parts are polished and the transmission measured to calculate the absorption/scattering coefficient. Finally, a low-order thermal analysis is presented and correlated to experimental results, including an energy balance and finite volume analysis using Fluent. These results suggest that optical quality fused quartz parts with low absorption and high index of refraction uniformity may be printed using the filament-fed process

    The safety of bivalirudin during elective percutaneous coronary interventions in heart transplant patients

    Get PDF
    Background: Bivalirudin has been shown to be safe and effective during percutaneous coronary interventions (PCI) of native coronary arteries in the REPLACE 2 trial. The safety of bivalirudin during PCIs in heart transplant patients is not known. Methods: Heart transplant patients who had undergone PCI of de novo lesions and received bivalirudin during the procedure were included in the study. Medical records were reviewed for the occurrence of death, myocardial infarction, target vessel revascularization or major bleeding up to 30 days after discharge. The results were compared with the REPLACE 2 trial and with a control group of heart transplant recipients who received heparin during their procedures. Results: There were 51 separate PCIs performed in 30 patients in the study group. The mean age was 56 ± 12 years and 6 (20%) were women. The control group consisted of 24 patients who had undergone 35 PCIs. There were no deaths, myocardial infarctions or target vessel revascularization during the follow-up period in the study group. The combined endpoint of death, myocardial infarctions, target vessel revascularization and major bleeding requiring two or more units of packed red blood cells occurred in 2 (3.9%) patients compared to 275 (9.2%) patients in the REPLACE 2 trial (p = 0.195) and 5 (14.3%) in the control group (p = 0.115). Conclusion: Bivalirudin is a safe antithrombotic medication to use during elective PCI in heart transplant patients with cardiac allograft vasculopathy. (Cardiol J 2007; 14: 458-462

    A reduced-order strategy for 4D-Var data assimilation

    Get PDF
    This paper presents a reduced-order approach for four-dimensional variational data assimilation, based on a prior EO F analysis of a model trajectory. This method implies two main advantages: a natural model-based definition of a mul tivariate background error covariance matrix Br\textbf{B}_r, and an important decrease of the computational burden o f the method, due to the drastic reduction of the dimension of the control space. % An illustration of the feasibility and the effectiveness of this method is given in the academic framework of twin experiments for a model of the equatorial Pacific ocean. It is shown that the multivariate aspect of Br\textbf{B}_r brings additional information which substantially improves the identification procedure. Moreover the computational cost can be decreased by one order of magnitude with regard to the full-space 4D-Var method

    Hedgehog-Interacting Protein is a multimodal antagonist of Hedgehog signalling

    Get PDF
    Hedgehog (HH) morphogen signalling, crucial for cell growth and tissue patterning in animals, is initiated by the binding of dually lipidated HH ligands to cell surface receptors. Hedgehog-Interacting Protein (HHIP), the only reported secreted inhibitor of Sonic Hedgehog (SHH) signalling, binds directly to SHH with high nanomolar affinity, sequestering SHH. Here, we report the structure of the HHIP N-terminal domain (HHIP-N) in complex with a glycosaminoglycan (GAG). HHIP-N displays a unique bipartite fold with a GAG-binding domain alongside a Cysteine Rich Domain (CRD). We show that HHIP-N is required to convey full HHIP inhibitory function, likely by interacting with the cholesterol moiety covalently linked to HH ligands, thereby preventing this SHH-attached cholesterol from binding to the HH receptor Patched (PTCH1). We also present the structure of the HHIP C-terminal domain in complex with the GAG heparin. Heparin can bind to both HHIP-N and HHIP-C, thereby inducing clustering at the cell surface and generating a high-avidity platform for SHH sequestration and inhibition. Our data suggest a multimodal mechanism, in which HHIP can bind two specific sites on the SHH morphogen, alongside multiple GAG interactions, to inhibit SHH signalling

    Development of a novel 3D culture system for screening features of a complex implantable device for CNS repair

    Get PDF
    Tubular scaffolds which incorporate a variety of micro- and nanotopographies have a wide application potential in tissue engineering especially for the repair of spinal cord injury (SCI). We aim to produce metabolically active differentiated tissues within such tubes, as it is crucially important to evaluate the biological performance of the three-dimensional (3D) scaffold and optimize the bioprocesses for tissue culture. Because of the complex 3D configuration and the presence of various topographies, it is rarely possible to observe and analyze cells within such scaffolds in situ. Thus, we aim to develop scaled down mini-chambers as simplified in vitro simulation systems, to bridge the gap between two-dimensional (2D) cell cultures on structured substrates and three-dimensional (3D) tissue culture. The mini-chambers were manipulated to systematically simulate and evaluate the influences of gravity, topography, fluid flow, and scaffold dimension on three exemplary cell models that play a role in CNS repair (i.e., cortical astrocytes, fibroblasts, and myelinating cultures) within a tubular scaffold created by rolling up a microstructured membrane. Since we use CNS myelinating cultures, we can confirm that the scaffold does not affect neural cell differentiation. It was found that heterogeneous cell distribution within the tubular constructs was caused by a combination of gravity, fluid flow, topography, and scaffold configuration, while cell survival was influenced by scaffold length, porosity, and thickness. This research demonstrates that the mini-chambers represent a viable, novel, scale down approach for the evaluation of complex 3D scaffolds as well as providing a microbioprocessing strategy for tissue engineering and the potential repair of SCI

    Variable strength of forest stand attributes and weather conditions on the questing activity of Ixodes ricinus ticks over years in managed forests

    Get PDF
    Given the ever-increasing human impact through land use and climate change on the environment, we crucially need to achieve a better understanding of those factors that influence the questing activity of ixodid ticks, a major disease-transmitting vector in temperate forests. We investigated variation in the relative questing nymph densities of Ixodes ricinus in differently managed forest types for three years (2008–2010) in SW Germany by drag sampling. We used a hierarchical Bayesian modeling approach to examine the relative effects of habitat and weather and to consider possible nested structures of habitat and climate forces. The questing activity of nymphs was considerably larger in young forest successional stages of thicket compared with pole wood and timber stages. Questing nymph density increased markedly with milder winter temperatures. Generally, the relative strength of the various environmental forces on questing nymph density differed across years. In particular, winter temperature had a negative effect on tick activity across sites in 2008 in contrast to the overall effect of temperature across years. Our results suggest that forest management practices have important impacts on questing nymph density. Variable weather conditions, however, might override the effects of forest management practices on the fluctuations and dynamics of tick populations and activity over years, in particular, the preceding winter temperatures. Therefore, robust predictions and the detection of possible interactions and nested structures of habitat and climate forces can only be quantified through the collection of long-term data. Such data are particularly important with regard to future scenarios of forest management and climate warming
    • …
    corecore