157 research outputs found

    Renal disease pathophysiology and treatment:contributions from the rat

    Get PDF
    The rat has classically been the species of choice for pharmacological studies and disease modeling, providing a source of high-quality physiological data on cardiovascular and renal pathophysiology over many decades. Recent developments in genome engineering now allow us to capitalize on the wealth of knowledge acquired over the last century. Here, we review rat models of hypertension, diabetic nephropathy, and acute and chronic kidney disease. These models have made important contributions to our understanding of renal diseases and have revealed key genes, such as Ace and P2rx7, involved in renal pathogenic processes. By targeting these genes of interest, researchers are gaining a better understanding of the etiology of renal pathologies, with the promised potential of slowing disease progression or even reversing the damage caused. Some, but not all, of these target genes have proved to be of clinical relevance. However, it is now possible to generate more sophisticated and appropriate disease models in the rat, which can recapitulate key aspects of human renal pathology. These advances will ultimately be used to identify new treatments and therapeutic targets of much greater clinical relevance

    The sodium glucose co-transporter 2 inhibitor dapagliflozin ameliorates the fluid-retaining effect of the endothelin A receptor antagonist zibotentan

    Get PDF
    Background: Endothelin A receptor antagonists (ETARA) slow chronic kidney disease (CKD) progression but their use is limited due to fluid retention and associated clinical risks. Sodium-glucose co-transporter 2 inhibitors (SGLT2i) cause osmotic diuresis and improve clinical outcomes in CKD and heart failure. We hypothesized that co-administration of the SGLT2i dapagliflozin with the ETARA zibotentan would mitigate the fluid retention risk using hematocrit (Hct) and bodyweight as proxies for fluid retention.Methods: Experiments were performed in 4% salt fed WKY rats. First, we determined the effect of zibotentan (30, 100 or 300 mg/kg/day) on Hct and bodyweight. Second, we assessed the effect of zibotentan (30 or 100 mg/kg/day) alone or in combination with dapagliflozin (3 mg/kg/day) on Hct and bodyweight.Results: Hct at Day 7 was lower in zibotentan versus vehicle groups [zibotentan 30 mg/kg/day, 43% (standard error 1); 100 mg/kg/day, 42% (1); and 300 mg/kg/day, 42% (1); vs vehicle, 46% (1); P &lt;. 05], while bodyweight was numerically higher in all zibotentan groups compared with vehicle. Combining zibotentan with dapagliflozin for 7 days prevented the change in Hct [zibotentan 100 mg/kg/day and dapagliflozin, 45% (1); vs vehicle 46% (1); P =. 44] and prevented the zibotentan-driven increase in bodyweight (zibotentan 100 mg/kg/day + dapagliflozin 3 mg/kg/day = -3.65 g baseline corrected bodyweight change; P =. 15).Conclusions: Combining ETARA with SGLT2i prevents ETARA-induced fluid retention, supporting clinical studies to assess the efficacy and safety of combining zibotentan and dapagliflozin in individuals with CKD.</p

    The sodium glucose co-transporter 2 inhibitor dapagliflozin ameliorates the fluid-retaining effect of the endothelin A receptor antagonist zibotentan

    Get PDF
    Background: Endothelin A receptor antagonists (ETARA) slow chronic kidney disease (CKD) progression but their use is limited due to fluid retention and associated clinical risks. Sodium-glucose co-transporter 2 inhibitors (SGLT2i) cause osmotic diuresis and improve clinical outcomes in CKD and heart failure. We hypothesized that co-administration of the SGLT2i dapagliflozin with the ETARA zibotentan would mitigate the fluid retention risk using hematocrit (Hct) and bodyweight as proxies for fluid retention.Methods: Experiments were performed in 4% salt fed WKY rats. First, we determined the effect of zibotentan (30, 100 or 300 mg/kg/day) on Hct and bodyweight. Second, we assessed the effect of zibotentan (30 or 100 mg/kg/day) alone or in combination with dapagliflozin (3 mg/kg/day) on Hct and bodyweight.Results: Hct at Day 7 was lower in zibotentan versus vehicle groups [zibotentan 30 mg/kg/day, 43% (standard error 1); 100 mg/kg/day, 42% (1); and 300 mg/kg/day, 42% (1); vs vehicle, 46% (1); P &lt;. 05], while bodyweight was numerically higher in all zibotentan groups compared with vehicle. Combining zibotentan with dapagliflozin for 7 days prevented the change in Hct [zibotentan 100 mg/kg/day and dapagliflozin, 45% (1); vs vehicle 46% (1); P =. 44] and prevented the zibotentan-driven increase in bodyweight (zibotentan 100 mg/kg/day + dapagliflozin 3 mg/kg/day = -3.65 g baseline corrected bodyweight change; P =. 15).Conclusions: Combining ETARA with SGLT2i prevents ETARA-induced fluid retention, supporting clinical studies to assess the efficacy and safety of combining zibotentan and dapagliflozin in individuals with CKD.</p

    The sodium glucose co-transporter 2 inhibitor dapagliflozin ameliorates the fluid-retaining effect of the endothelin A receptor antagonist zibotentan

    Get PDF
    Background: Endothelin A receptor antagonists (ETARA) slow chronic kidney disease (CKD) progression but their use is limited due to fluid retention and associated clinical risks. Sodium-glucose co-transporter 2 inhibitors (SGLT2i) cause osmotic diuresis and improve clinical outcomes in CKD and heart failure. We hypothesized that co-administration of the SGLT2i dapagliflozin with the ETARA zibotentan would mitigate the fluid retention risk using hematocrit (Hct) and bodyweight as proxies for fluid retention.Methods: Experiments were performed in 4% salt fed WKY rats. First, we determined the effect of zibotentan (30, 100 or 300 mg/kg/day) on Hct and bodyweight. Second, we assessed the effect of zibotentan (30 or 100 mg/kg/day) alone or in combination with dapagliflozin (3 mg/kg/day) on Hct and bodyweight.Results: Hct at Day 7 was lower in zibotentan versus vehicle groups [zibotentan 30 mg/kg/day, 43% (standard error 1); 100 mg/kg/day, 42% (1); and 300 mg/kg/day, 42% (1); vs vehicle, 46% (1); P &lt;. 05], while bodyweight was numerically higher in all zibotentan groups compared with vehicle. Combining zibotentan with dapagliflozin for 7 days prevented the change in Hct [zibotentan 100 mg/kg/day and dapagliflozin, 45% (1); vs vehicle 46% (1); P =. 44] and prevented the zibotentan-driven increase in bodyweight (zibotentan 100 mg/kg/day + dapagliflozin 3 mg/kg/day = -3.65 g baseline corrected bodyweight change; P =. 15).Conclusions: Combining ETARA with SGLT2i prevents ETARA-induced fluid retention, supporting clinical studies to assess the efficacy and safety of combining zibotentan and dapagliflozin in individuals with CKD.</p

    Transcription controls growth, cell kinetics and cholesterol supply to sustain ACTH responses

    Get PDF
    Chronic ACTH exposure is associated with adrenal hypertrophy and steroidogenesis. The underlying molecular processes in mice have been analysed by microarray, histological and immunohistochemical techniques. Synacthen infused for 2 weeks markedly increased adrenal mass and plasma corticosterone levels. Microarray analysis found greater than 2-fold changes in expression of 928 genes (P < 0.001; 397 up, 531 down). These clustered in pathways involved in signalling, sterol/lipid metabolism, cell proliferation/hypertrophy and apoptosis. Signalling genes included some implicated in adrenal adenomas but also upregulated genes associated with cyclic AMP and downregulated genes associated with aldosterone synthesis. Sterol metabolism genes were those promoting cholesterol supply (Scarb1, Sqle, Apoa1) and disposal (Cyp27a1, Cyp7b1). Oil red O staining showed lipid depletion consistent with reduced expression of genes involved in lipid synthesis. Genes involved in steroidogenesis (Star, Cyp11a1, Cyp11b1) were modestly affected (P < 0.05; <1.3-fold). Increased Ki67, Ccna2, Ccnb2 and Tk1 expression complemented immunohistochemical evidence of a 3-fold change in cell proliferation. Growth arrest genes, Cdkn1a and Cdkn1c, which are known to be active in hypertrophied cells, were increased >4-fold and cross-sectional area of fasciculata cells was 2-fold greater. In contrast, genes associated with apoptosis (eg Casp12, Clu,) were downregulated and apoptotic cells (Tunel staining) were fewer (P < 0.001) and more widely distributed throughout the cortex. In summary, long-term steroidogenesis with ACTH excess is sustained by genes controlling cholesterol supply and adrenal mass. ACTH effects on adrenal morphology and genes controlling cell hypertrophy, proliferation and apoptosis suggest the involvement of different cell types and separate molecular pathways

    Effect of P2X4 and P2X7 receptor antagonism on the pressure diuresis relationship in rats

    Get PDF
    Reduced glomerular filtration, hypertension and renal microvascular injury are hallmarks of chronic kidney disease, which has a global prevalence of ~10%. We have shown previously shown that the Fischer (F344) rat has lower GFR than the Lewis rat, and is more susceptible to renal injury induced by hypertension. In the early stages this injury is limited to the pre-glomerular vasculature. We hypothesized that poor renal hemodynamic function and vulnerability to vascular injury are causally linked and genetically determined. In the present study, normotensive F344 rats had a blunted pressure diuresis relationship, compared with Lewis rats. A kidney microarray was the interrogated using the Endeavour enrichment tool to rank candidate genes for impaired blood pressure control. Two novel candidate genes, P2rx7 and P2rx4, were identified, having a 7- and 3- fold increased expression in F344 rats. Immunohistochemistry localized P2X4 and P2X7 receptor expression to the endothelium of the pre-glomerular vasculature. Expression of both receptors was also found in the renal tubule; however there was no difference in expression profile between strains. Brilliant Blue G (BBG), a relatively selective P2X7 antagonist suitable for use in vivo, was administered to both rat strains. In Lewis rats, BBG had no effect on blood pressure, but increased renal vascular resistance, consistent with inhibition of some basal vasodilatory tone. In F344 rats BBG caused a significant reduction in blood pressure and a decrease in renal vascular resistance, suggesting that P2X7 receptor activation may enhance vasoconstrictor tone in this rat strain. BBG also caused reduced the pressure diuresis threshold in F344 rats, but did not alter its slope. These preliminary findings suggest a physiological and potential pathophysiological role for P2X7 in controlling renal and/or systemic vascular function, which could in turn affect susceptibility to hypertension-related kidney damage

    Multidrug resistant pulmonary tuberculosis treatment regimens and patient outcomes: an individual patient data meta-analysis of 9,153 patients.

    Get PDF
    Treatment of multidrug resistant tuberculosis (MDR-TB) is lengthy, toxic, expensive, and has generally poor outcomes. We undertook an individual patient data meta-analysis to assess the impact on outcomes of the type, number, and duration of drugs used to treat MDR-TB

    The Tuberculin Skin Test (TST) Is Affected by Recent BCG Vaccination but Not by Exposure to Non-Tuberculosis Mycobacteria (NTM) during Early Life

    Get PDF
    The tuberculin skin test (TST) is widely used in TB clinics to aid Mycobacterium tuberculosis (M.tb) diagnosis, but the definition and the significance of a positive test in very young children is still unclear. This study compared the TST in Gambian children at 4½ months of age who either received BCG vaccination at birth (Group 1) or were BCG naïve (Group 2) in order to examine the role of BCG vaccination and/or exposure to environmental mycobacteria in TST reactivity at this age. Nearly half of the BCG vaccinated children had a positive TST (≥5 mm) whereas all the BCG naïve children were non-reactive, confirming that recent BCG vaccination affects TST reactivity. The BCG naïve children demonstrated in vitro PPD responses in peripheral blood in the absence of TST reactivity, supporting exposure to and priming by environmental mycobacterial antigens. Group 2 were then vaccinated at 4½ months of age and a repeat TST was performed at 20–28 months of age. Positive reactivity (≥5 mm) was evident in 11.1% and 12.5% infants from Group 1 and Group 2 respectively suggesting that the timing of BCG vaccination had little effect by this age. We further assessed for immune correlates in peripheral blood at 4½ months of age. Mycobacterial specific IFNγ responses were greater in TST responders than in non-responders, although the size of induration did not correlate with IFNγ. However the IFNγ: IL-10 ratio positively correlated with TST induration suggesting that the relationship between PPD induced IFNγ and IL-10 in the peripheral blood may be important in controlling TST reactivity. Collectively these data provide further insights into how the TST is regulated in early life, and how a positive response might be interpreted

    Activation of Thiazide-Sensitive Co-Transport by Angiotensin II in the cyp1a1-Ren2 Hypertensive Rat

    Get PDF
    Transgenic rats with inducible expression of the mouse Ren2 gene were used to elucidate mechanisms leading to the development of hypertension and renal injury. Ren2 transgene activation was induced by administration of a naturally occurring aryl hydrocarbon, indole-3-carbinol (100 mg/kg/day by gastric gavage). Blood pressure and renal parameters were recorded in both conscious and anesthetized (butabarbital sodium; 120 mg/kg IP) rats at selected time-points during the development of hypertension. Hypertension was evident by the second day of treatment, being preceded by reduced renal sodium excretion due to activation of the thiazide-sensitive sodium-chloride co-transporter. Renal injury was evident after the first day of transgene induction, being initially limited to the pre-glomerular vasculature. Mircoalbuminuria and tubuloinsterstitial injury developed once hypertension was established. Chronic treatment with either hydrochlorothiazide or an AT1 receptor antagonist normalized sodium reabsorption, significantly blunted hypertension and prevented renal injury. Urinary aldosterone excretion was increased ∼20 fold, but chronic mineralocorticoid receptor antagonism with spironolactone neither restored natriuretic capacity nor prevented hypertension. Spironolactone nevertheless ameliorated vascular damage and prevented albuminuria. This study finds activation of sodium-chloride co-transport to be a key mechanism in angiotensin II-dependent hypertension. Furthermore, renal vascular injury in this setting reflects both barotrauma and pressure-independent pathways associated with direct detrimental effects of angiotensin II and aldosterone
    • …
    corecore