22 research outputs found

    4000 years of human dietary evolution in central Germany, from the first farmers to the first elites

    Get PDF
    Investigation of human diet during the Neolithic has often been limited to a few archaeological cultures or single sites. In order to provide insight into the development of human food consumption and husbandry strategies, our study explores bone collagen carbon and nitrogen isotope data from 466 human and 105 faunal individuals from 26 sites in central Germany. It is the most extensive data set to date from an enclosed geographic microregion, covering 4,000 years of agricultural history from the Early Neolithic to the Early Bronze Age. The animal data show that a variety of pastures and dietary resources were explored, but that these changed remarkably little over time. In the human δ15N however we found a significant increase with time across the different archaeological cultures. This trend could be observed in all time periods and archaeological cultures (Bell Beaker phenomenon excluded), even on continuously populated sites. Since there was no such trend in faunal isotope values, we were able largely to exclude manuring as the cause of this effect. Based on the rich interdisciplinary data from this region and archaeological period we can argue that meat consumption increased with the increasing duration of farming subsistence. In δ13C, we could not observe any clear increasing or decreasing trends during the archaeological time periods, either for humans or for animals, which would have suggested significant changes in the environment and landscape use. We discovered sex-related dietary differences, with males of all archaeological periods having higher δ15N values than females, and an age-related increasing consumption of animal protein. An initial decrease of δ15N-values at the age of 1-2 years reveals partial weaning, while complete weaning took place at the age of 3-4 years

    Neolithic Mitochondrial Haplogroup H Genomes and the Genetic Origins of Europeans

    Get PDF
    Haplogroup H dominates present-day Western European mitochondrial DNA variability (\u3e40%), yet was less common (~19%) among Early Neolithic farmers (~5450 BC) and virtually absent in Mesolithic hunter-gatherers. Here we investigate this major component of the maternal population history of modern Europeans and sequence 39 complete haplogroup H mitochondrial genomes from ancient human remains. We then compare this ‘real-time’ genetic data with cultural changes taking place between the Early Neolithic (~5450 BC) and Bronze Age (~2200 BC) in Central Europe. Our results reveal that the current diversity and distribution of haplogroup H were largely established by the Mid Neolithic (~4000 BC), but with substantial genetic contributions from subsequent pan-European cultures such as the Bell Beakers expanding out of Iberia in the Late Neolithic (~2800 BC). Dated haplogroup H genomes allow us to reconstruct the recent evolutionary history of haplogroup H and reveal a mutation rate 45% higher than current estimates for human mitochondria

    RFAC, a program for automated NMR R-factor estimation

    No full text
    A computer program (RFAC) has been developed, which allows the automated estimation of residual indices (R-factors) for protein NMR structures and gives a reliable measure for the quality of the structures. The R-factor calculation is based on the comparison of experimental and simulated 1H NOESY NMR spectra. The approach comprises an automatic peak picking and a Bayesian analysis of the data, followed by an automated structure based assignment of the NOESY spectra and the calculation of the R-factor. The major difference to previously published R-factor definitions is that we take the non-assigned experimental peaks into account as well. The number and the intensities of the non-assigned signals are an important measure for the quality of an NMR structure. It turns out that for different problems optimally adapted R-factors should be used which are defined in the paper. The program allows to compute a global R-factor, different R-factors for the intra residual NOEs, the inter residual NOEs, sequential NOEs, medium range NOEs and long range NOEs. Furthermore, R-factors can be calculated for various user defined parts of the molecule or it is possible to obtain a residue-by-residue R-factor. Another possibility is to sort the R-factors according to their corresponding distances. The summary of all these different R-factors should allow the user to judge the structure in detail. The new program has been successfully tested on two medium sized proteins, the cold shock protein (TmCsp) from Termotoga maritima and the histidine containing protein (HPr) from Staphylococcus carnosus. A comparison with a previously published R-factor definition shows that our approach is more sensitive to errors in the calculated structure

    Automated assignment of NOESY NMR spectra using a knowledge based method (KNOWNOE)

    No full text
    Automated assignment of NOESY spectra is a prerequisite for automated structure determination of biological macromolecules. With the program KNOWNOE we present a novel, knowledge based approach to this problem. KNOWNOE is devised to work directly with the experimental spectra without interference of an expert. Besides making use of routines already implemented in AUREMOL, it contains as a central part a knowledge driven Bayesian algorithm for solving ambiguities in the NOE assignments. These ambiguities mainly arise from chemical shift degeneration which allows multiple assignments of cross peaks. Using a set of 326 protein NMR structures, statistical tables in the form of atom-pairwise volume probability distributions (VPDs) were derived. VPDs for all assignment possibilities relevant to the assignments of interproton NOEs were calculated. With these data for a given cross peak with N possible assignments Ai (i = 1,...,N) the conditional probabilities P(Ai, a/V0) can be calculated that the assignment Ai determines essentially all (a-times) of the cross peak volume V0. An assignment Ak with a probability P(Ak, a/V0) higher than 0.8 is transiently considered as unambiguously assigned. With a list of unambiguously assigned peaks a set of structures is calculated. These structures are used as input for a next cycle of iteration where a distance threshold Dmax is dynamically reduced. The program KNOWNOE was tested on NOESY spectra of a medium size protein, the cold shock protein (TmCsp) from Thermotoga maritima. The results show that a high quality structure of this protein can be obtained by automated assignment of NOESY spectra which is at least as good as the structure obtained from manual data evaluation

    Ancient DNA, Strontium isotopes, and osteological analyses shed light on social and kinship organization of the Later Stone Age

    Get PDF
    In 2005 four outstanding multiple burials were discovered near Eulau, Germany. The 4,600-year-old graves contained groups of adults and children buried facing each other. Skeletal and artifactual evidence and the simultaneous interment of the individuals suggest the supposed families fell victim to a violent event. In a multidisciplinary approach, archaeological, anthropological, geochemical (radiogenic isotopes), and molecular genetic (ancient DNA) methods were applied to these unique burials. Using autosomal, mitochondrial, and Y-chromosomal markers, we identified genetic kinship among the individuals. A direct child-parent relationship was detected in one burial, providing the oldest molecular genetic evidence of a nuclear family. Strontium isotope analyses point to different origins for males and children versus females. By this approach, we gain insight into a Late Stone Age society, which appears to have been exogamous and patrilocal, and in which genetic kinship seems to be a focal point of social organization

    Chronological overview of mean isotopic values.

    No full text
    <p>Total sample size of each chronological period, mean isotopic values of all human (infans I excluded) and animal samples. Additional information on isotopic differences of <i>δ</i><sup>13</sup>C in ‰ and <i>δ</i><sup>15</sup>N in ‰ between humans, domestic animals (cattle, sheep/goat, pig) and herbivores respectively (<i>Δ</i><sub>domestic animals-human</sub>, <i>Δ</i><sub>herbivores-human</sub>).</p
    corecore