17 research outputs found

    Five decades of radioglaciology

    Get PDF
    Radar sounding is a powerful geophysical approach for characterizing the subsurface conditions of terrestrial and planetary ice masses at local to global scales. As a result, a wide array of orbital, airborne, ground-based, and in situ instruments, platforms and data analysis approaches for radioglaciology have been developed, applied or proposed. Terrestrially, airborne radar sounding has been used in glaciology to observe ice thickness, basal topography and englacial layers for five decades. More recently, radar sounding data have also been exploited to estimate the extent and configuration of subglacial water, the geometry of subglacial bedforms and the subglacial and englacial thermal states of ice sheets. Planetary radar sounders have observed, or are planned to observe, the subsurfaces and near-surfaces of Mars, Earth's Moon, comets and the icy moons of Jupiter. In this review paper, and the thematic issue of the Annals of Glaciology on ‘Five decades of radioglaciology’ to which it belongs, we present recent advances in the fields of radar systems, missions, signal processing, data analysis, modeling and scientific interpretation. Our review presents progress in these fields since the last radio-glaciological Annals of Glaciology issue of 2014, the context of their history and future prospects

    New Gravity-derived Bathymetry for the Thwaites, Crosson, and Dotson Ice Shelves Revealing Two Ice Shelf Populations

    Get PDF
    Ice shelves play a critical role in the long-term stability of ice sheets through their buttressing effect. The underlying bathymetry and cavity thickness are key inputs for modelling future ice sheet evolution. However, direct observation of sub-ice-shelf bathymetry is time-consuming, logistically risky, and in some areas simply not possible. Here we use new compilations of airborne and marine gravity, radar depth sounding, and swath bathymetry to provide new estimates of sub-ice-shelf bathymetry outboard of the rapidly changing West Antarctic Thwaites Glacier and beneath the adjacent Dotson and Crosson ice shelves. This region is of special interest, as the low-lying inland reverse slope of the Thwaites Glacier system makes it vulnerable to marine ice sheet instability, with rapid grounding line retreat observed since 1993 suggesting this process may be underway. Our results confirm a major marine channel \u3e800 m deep extends tens of kilometres to the front of Thwaites Glacier, while the adjacent ice shelves are underlain by more complex bathymetry. Comparison of our new bathymetry with ice shelf draft reveals that ice shelves formed since 1993 comprise a distinct population where the draft conforms closely to the underlying bathymetry, unlike the older ice shelves, which show a more uniform depth of the ice base. This indicates that despite rapid basal melting in some areas, these recently floated parts of the ice shelf are not yet in dynamic equilibrium with their retreated grounding line positions and the underlying ocean system, a factor which must be included in future models of this region\u27s evolution

    Model Predictive Control of Large-Dimension Cable-Driven Parallel Robots

    No full text
    International audienceA Model Predictive Control (MPC) strategy is proposed in this paper for large-dimension cable-driven parallel robots working at low speeds. The latter characteristic reduces the non-linearity of the system within the MPC prediction horizon. Therefore, linear MPC is applied and compared with two commonly used strategies: Sliding mode control and PID+ control. The simulations aim at comparing disturbance rejection performances and the results indicate a superior performance of the proposed controller. Indeed, MPC takes into account control limits (cable tension limits) directly in the control design which allows the controller to better exploit the robot capabilities. In addition, actuation redundancy is resolved as an integral part of the control strategy, instead of calculating the desired wrench and then applying a tension distribution method

    Reducing the Radiation Dose for Computed Tomography Colonography Using Model-Based Iterative Reconstruction.

    Full text link
    Purpose To determine whether radiation doses during computed tomography (CT) colonography (CTC) can be further reduced while maintaining image quality using model-based iterative reconstruction (MBIR
    corecore