37 research outputs found
FTO genetic variants, dietary intake and body mass index: insights from 177 330 individuals
FTO is the strongest known genetic susceptibility locus for obesity. Experimental studies in animals suggest the potential roles of FTO in regulating food intake. The interactive relation among FTO variants, dietary intake and body mass index (BMI) is complex and results from previous often small-scale studies in humans are highly inconsistent. We performed large-scale analyses based on data from 177 330 adults (154 439 Whites, 5776 African Americans and 17 115 Asians) from 40 studies to examine: (i) the association between the FTO-rs9939609 variant (or a proxy single-nucleotide polymorphism) and total energy and macronutrient intake and (ii) the interaction between the FTO variant and dietary intake on BMI. The minor allele (A-allele) of the FTO-rs9939609 variant was associated with higher BMI in Whites (effect per allele = 0.34 [0.31, 0.37] kg/m2, P = 1.9 × 10−105), and all participants (0.30 [0.30, 0.35] kg/m2, P = 3.6 × 10−107). The BMI-increasing allele of the FTO variant showed a significant association with higher dietary protein intake (effect per allele = 0.08 [0.06, 0.10] %, P = 2.4 × 10−16), and relative weak associations with lower total energy intake (−6.4 [−10.1, −2.6] kcal/day, P = 0.001) and lower dietary carbohydrate intake (−0.07 [−0.11, −0.02] %, P = 0.004). The associations with protein (P = 7.5 × 10−9) and total energy (P = 0.002) were attenuated but remained significant after adjustment for BMI. We did not find significant interactions between the FTO variant and dietary intake of total energy, protein, carbohydrate or fat on BMI. Our findings suggest a positive association between the BMI-increasing allele of FTO variant and higher dietary protein intake and offer insight into potential link between FTO, dietary protein intake and adiposit
Anastrozole versus tamoxifen for the prevention of locoregional and contralateral breast cancer in postmenopausal women with locally excised ductal carcinoma in situ (IBIS-II DCIS): a double-blind, randomised controlled trial
Background
Third-generation aromatase inhibitors are more effective than tamoxifen for preventing recurrence in postmenopausal women with hormone-receptor-positive invasive breast cancer. However, it is not known whether anastrozole is more effective than tamoxifen for women with hormone-receptor-positive ductal carcinoma in situ (DCIS). Here, we compare the efficacy of anastrozole with that of tamoxifen in postmenopausal women with hormone-receptor-positive DCIS.
Methods
In a double-blind, multicentre, randomised placebo-controlled trial, we recruited women who had been diagnosed with locally excised, hormone-receptor-positive DCIS. Eligible women were randomly assigned in a 1:1 ratio by central computer allocation to receive 1 mg oral anastrozole or 20 mg oral tamoxifen every day for 5 years. Randomisation was stratified by major centre or hub and was done in blocks (six, eight, or ten). All trial personnel, participants, and clinicians were masked to treatment allocation and only the trial statistician had access to treatment allocation. The primary endpoint was all recurrence, including recurrent DCIS and new contralateral tumours. All analyses were done on a modified intention-to-treat basis (in all women who were randomised and did not revoke consent for their data to be included) and proportional hazard models were used to compute hazard ratios and corresponding confidence intervals. This trial is registered at the ISRCTN registry, number ISRCTN37546358.
Results
Between March 3, 2003, and Feb 8, 2012, we enrolled 2980 postmenopausal women from 236 centres in 14 countries and randomly assigned them to receive anastrozole (1449 analysed) or tamoxifen (1489 analysed). Median follow-up was 7·2 years (IQR 5·6–8·9), and 144 breast cancer recurrences were recorded. We noted no statistically significant difference in overall recurrence (67 recurrences for anastrozole vs 77 for tamoxifen; HR 0·89 [95% CI 0·64–1·23]). The non-inferiority of anastrozole was established (upper 95% CI <1·25), but its superiority to tamoxifen was not (p=0·49). A total of 69 deaths were recorded (33 for anastrozole vs 36 for tamoxifen; HR 0·93 [95% CI 0·58–1·50], p=0·78), and no specific cause was more common in one group than the other. The number of women reporting any adverse event was similar between anastrozole (1323 women, 91%) and tamoxifen (1379 women, 93%); the side-effect profiles of the two drugs differed, with more fractures, musculoskeletal events, hypercholesterolaemia, and strokes with anastrozole and more muscle spasm, gynaecological cancers and symptoms, vasomotor symptoms, and deep vein thromboses with tamoxifen.
Conclusions
No clear efficacy differences were seen between the two treatments. Anastrozole offers another treatment option for postmenopausal women with hormone-receptor-positive DCIS, which may be be more appropriate for some women with contraindications for tamoxifen. Longer follow-up will be necessary to fully evaluate treatment differences
Molecular characterisation of the interactions between staphylococcus aureus and elastin
THESIS 6784Previous studies have shown that a cell-surface 83 kDa elastin-binding protein of Staphylococcus aureus (EbpS) mediates binding to soluble elastin. Antibodies were produced to the N terminus and C terminus of EbpS. Western immunoblotting identified EbpS as an 83 kDa protein in whole cell lysates of S. aureus. Release of EbpS from purified S. aureus cell envelopes, with either lithium chloride or sodium dodecyl sulphate, revealed that the protein is associated with the cell surface by a different mechanism to that of the typical cell-wall-associated protein ClfA, which belongs to a family of staphylococcal extracellular matrix-binding proteins that are covalently anchored to the cell wall and are known as microbial surface components recognising adhesive matrix molecules (MSCRAMMs). EbpS was localized to the cytoplasmic membrane of S. aureus and Lactococcus lactis expressing EbpS by cellular fractionation using the stabilised protoplast method whereby cell-wall-associated proteins were released from the cell surface by enzymatic digestion of the cell wall peptidoglycan while maintaining an osmotically stable protoplast. In addition, EbpS was detected in the purified membrane fraction of S. aureus that had been prepared by mechanically smashing the cells and separating fractions by differential centrifugation
Quantification of recA gene expression as an indicator of repair potential in marine bacterioplankton communities of Antarctica
Marine bacteria in surface waters must cope daily with the damaging effects of exposure to solar radiation (containing both UV-A and UV-B wavelengths), which produces lesions in their DNA. As the stratospheric ozone layer is depleted, these coping mechanisms are likely to play an even more important role in the viability of marine bacterial communities. The recA gene is ubiquitous among eubacteria and is highly conserved both in nucleotide and amino acid sequence. Besides its role in generalized recombination, the gene's translational product, RecA, is the regulator of 'dark repair' activity (DNA-repair mechanisms that do not require visible light as a cofactor). We have taken advantage of this function and used recA gene expression as a barometer of the DNAdamage repair capacity of bacterial assemblages in the Southern Ocean. Studies were conducted in the Gerlache Strait, Antarctica, in the austral springs of 1995 and 1996. Analysis of both recA mRNA and RecA protein extracted from natural communities indicated that the level of expression of this gene varied in a diel fashion, suggesting an increased repair capacity in these organisms. These included an early morning rise in RecA levels followed by a plateau or even a reduction in RecA concentration during the remainder of the day. A much greater increase in RecA was consistently observed after sunset, followed by a constant decrease during the night. Microcosm experiments with a RecA+ Gerlache Strait g-proteobacteria isolate, RM11001, demonstrated a similar diel pattern of expression. These studies demonstrate the usefulness of RecA as a biological indicator of DNA repair capacity in natural bacterial assemblages. They indicate that 'dark repair' of DNA damage is an important coping mechanism for bacteria in the marine environment of Antarctica.Peer reviewedMicrobiology and Molecular Genetic